We recently introduced a new series of UHPLC columns with a particle size of 1.6 µm. Here we explain how to transfer an existing HPLC method to a new UHPLC method using polyphenols as an example.
Figure 1: Chromatogram obtained as the first step. Standards: 1. Puerarin 2. Baicalin (37.93)* 3. Resveratrol (2.00) 4. Daidzein (2.75) 5. Quercetin (3.31) 6. Biochanin A (26.69) 7. Curcumin (4.85) 8. Ipriflavone (16.70) *( )s indicate separation factor.
We previously published an HPLC method on Application Data No. 112 (https://develosil.us/wp-content/uploads/DN112-0519-Analysis-of-Polyphenols-HPLC.pdf). Entering parameters of the method and the specification of the new UHPLC column in a widely available method transfer software program generated an initial gradient table (Table I). The software suggested a flow rate of 0.375 mL/min; this was adjusted to 0.5 mL/min, the optimum flow rate for this column.
The first thing to decide is the type of detection. If using mass spectrometry, only volatile mobile phase modifiers such as formic acid can be used. In the case of UV detection, acetic acid, formic acid, phosphate buffers, and others can be used. We chose 0.1% formic acid, so that either detection method may be used. Since it can be prepared with a pipette alone, it has the advantages of time and less human error.
The tailing factor and the separation factor obtained using different acids in the mobile phase are shown in Table II for each analyte. Quercetin is known to have a tailing tendency with formic acid, and may also show carryover due to strong ligating properties. Although 0.1% formic acid shows slight tailing with a tailing factor of 1.43, two other mobile phases showed even better results. Considering LC–MS use, we chose 0.1% formic acid as the first candidate. For better peak shapes, 0.08% formic acid + 0.02% TFA is an option.
Considering that baicalin and resveratrol have very closely eluted peaks, 0.1% formic acid showed the best separation factor. After adjustments to allow for elution of ipriflavone, we set the final gradient conditions as shown in Table III.
Mobile phase: A) 0.1% formic acid in water, B) 0.1% formic acid in acetonitrile. Conditions: Column: Develosil UHPLC C18, 1.6 µm Size: 2.0 × 50 mm; Temperature: 40 °C; Detection: UV at 260 nm; System: UHPLC with a mixer of 100 µL
Mobile phase: A) 0.1% formic acid in water, B) 0.1% formic acid in acetonitrile
Develosil USA
10060 Carroll Canyon Rd, Suite 100, San Diego CA 92131
Tel and Fax: (858) 800-2433
Website: www.develosil.us
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.
Oasis or Sand Dune? Isolation of Psychedelic Compounds
January 20th 2025Magic mushrooms, once taboo, have recently experienced a renaissance. This new awakening is partially due to new findings that indicate the effects of psilocybin, and its dephosphorylated cousin psilocin may produce long lasting results for patients who might be struggling with anxiety, depression, alcohol and drug abuse, and post-traumatic stress disorder. Hamilton Company has developed a methodology for the isolation and identification of 5 common psychedelic compounds used in the potential treatment of disease. The PRP-1 HPLC column resin remains stable in the harsh alkaline conditions ideal for better separations.
GPCRs – The Biological Traffic Modulator: Chromatographic Analysis of Peptides in the GI Tract
January 20th 2025The G protein-coupled receptors (GPCR) are found throughout the entire body and have shown significance in the development of new therapeutic treatments. Isolation of seven classic GRPC peptides initiating in the GI tract highlights the benefits of using the polymer-based PRP-3, a reversed-phase resin. The covalent bonds found in the PRP-3 exhibit advantageous interactions between the biological π bonds found in the peptides and the available aromatic benzyl rings of the resin.