Monitoring for Per- and Poly-Fluoroalkyl (PFAS) with Advanced Mass Spectrometry– Based Methods
November 9th 2020Per- and poly-fluoroalkyl substances (PFAS) are a family of potentially thousands of synthetic compounds that have long been used in the manufacture of a variety of common products with stain-repellent and nonstick properties. Their signature strong fluorine and carbon bonds make them difficult to break down and, as a result, they are among the most persistent of today’s environmental pollutants. Alarmingly, PFAS can be found in drinking water and have been shown to accumulate in the body with the potential to cause multiple health problems, such as hormone disruption and cancer. Advances in mass spectrometry have facilitated the detection of known PFAS contaminants as well as the identification of poorly studied and novel compounds in watersheds. This article explores the detection of known and novel PFAS contaminants in aqueous film-forming foams and raw drinking water sources in North Carolina, using new advances in mass spectrometry and data acquisition to improve identification and quantitation.
High-Throughput Profiling of Long Chain Fatty Acids and Oxylipins by LC–MS
November 6th 2020Long chain fatty acids (LCFAs) function as a source of metabolic energy, substrates for membrane biogenesis, and storage of metabolic energy. Oxylipins, oxygenated derivatives of LCFAs, regulate the activity of many cellular processes. Existing methods for the analysis of LCFAs and oxylipins have limited compound coverage and sensitivity that, therefore, prevent their application in biological studies. In this work, we developed a high-throughput LC–MS method for analysis of 51 LCFAs and oxylipins. LCFAs and oxylipins were first extracted from biological samples via solid-phase extraction. The extracted molecules were analyzed by targeted comparative metabolomics. Saturated and monounsaturated LCFAs were analyzed in single ion reaction mode, while polyunsaturated LCFAs and oxylipins were analyzed in multiple reaction monitoring mode. Using this method, we successfully quantified 31 LCFAs and oxylipins from mouse livers.
Gas chromatography–mass spectrometry (GC–MS) with cold electron ionization (EI) is based on interfacing the GC and MS instruments with supersonic molecular beams (SMB) along with electron ionization of vibrationally cold sample compounds in SMB in a fly-through ion source (hence the name cold EI). GC–MS with cold EI improves all the central performance aspects of GC–MS. These aspects include enhanced molecular ions, improved sample identification, an extended range of compounds amenable for analysis, uniform response to all analytes, faster analysis, greater selectivity, and lower detection limits. In GC–MS with cold EI, the GC elution temperatures can be significantly lowered by reducing the column length and increasing the carrier gas flow rate. Furthermore, the injector temperature can be reduced using a high column flow rate, and sample degradation at the cold EI fly-through ion source is eliminated. Thus, a greater range of thermally labile and low volatility compounds can be analyzed. The extension of the range of compounds and applications amenable for analysis is the most important benefit of cold EI that bridges the gap with LC–MS. Several examples of GC–MS with cold EI applications are discussed including cannabinoids analysis, synthetic organic compounds analysis, and lipids in blood analysis for medical diagnostics.