LC–MS Characterization of Mesquite Flour Constituents
January 18th 2017Using a liquid chromatography–mass spectrometry (LC–MS) method in conjunction with two complementary types of chromatographic retention modes - reversed phase and aqueous normal phase - various compounds present in mesquite flour extracts were identified. Because of the diverse types of chemical constituents found in such natural product extracts, a single chromatographic mode may not be sufficient for a comprehensive characterization. However, the combination of reversed-phase and aqueous normal phase LC can encompass a wide range of analyte polarity. This characterization of the composition of mesquite flour could be used in future studies to elucidate the beneficial health effects of its consumption.
uHPLC Teaching Assistant: A New Tool for Learning and Teaching Liquid Chromatography, Part 1
January 18th 2017The free spreadsheet-based program HPLC Teaching Assistant was developed for effective and innovative learning and teaching of liquid chromatography. This software allows teachers to illustrate the basic principles of high performance liquid chromatography (HPLC) using virtual chromatograms (simulated chromatograms) obtained under various analytical conditions. In the first instalment of this series, we demonstrate the possibilities offered by this spreadsheet to illustrate the concept of chromatographic resolution, including the impact of retention, selectivity, and efficiency; understand the plate height (van Deemter) equation and kinetic performance in HPLC; recognize the importance of analyte lipophilicity (log P) on retention and selectivity in reversed-phase HPLC mode; and manipulate or adapt reversed-phase HPLC retention, taking into account the acido-basic properties (pKa) of compounds and the mobile-phase pH.
Microextraction and Its Application to Forensic Toxicology Analysis
January 18th 2017This instalment describes several commonly used microextraction sample preparation techniques and their applications to forensic toxicology analysis. Solid-phase microextraction (SPME), microextraction by packed sorbent (MEPS), and different types of liquid-based microextraction (LPME), including single‑drop microextraction (SDME), hollow-fibre supported LPME, three-phase LPME, and dispersive liquid–liquid microextraction (DLLME), are discussed. Examples of application of these techniques to determine illicit drugs and drugs of abuse from various biological specimens are provided as well.