The Role of Mass Spectrometry in Biopharmaceutical Drug Discovery and Development
December 12th 2017The discovery and development of biopharmaceuticals that target specific diseases can be transformative for people living with illness. However, bringing a new therapy to market is a prolonged and costly process mired in uncertainty. Ensuring safety, efficacy, and product quality is paramount. Biopharmaceuticals, by their nature, are highly complex. A myriad of heterogeneity can be intentionally functional, an unwanted consequence of manufacturing and storage, or generated by biological modification in vivo. Not all, but some post-translational modifications or biotransformations can impact development, manufacturing, safety, efficacy, and overall product quality. These critical quality attributes (CQAs) need to be identified, characterized, controlled, and monitored throughout the drug discovery and development cycle. Specialty measurement using mass spectrometry (MS) continues to play an ever‑increasing role across the continuum.
Screening and Characterizing Colloidal Interactions for Optimal Biotherapeutic Formulations
December 12th 2017Colloidal interactions arising from surface-exposed moieties on therapeutic proteins, monoclonal antibodies, antibody–drug conjugates, and other biopharmaceuticals lie at the heart of drug product stability. Therefore, it is not surprising that much effort has been devoted to finding effective means to characterize these interactions and to rapidly screen drug candidates and formulations for optimal colloidal properties. The most common techniques for performing these analyses are based on analytical light scattering, in its two primary flavours: static light scattering (SLS) and dynamic light scattering (DLS). Recent advances in light scattering instrumentation, analytical methods, and algorithms provide developers of biologics with powerful tools to perform these studies.