A new method has been developed for the identification and classification of various tuberculosis (TB) causing and non-TB Mycobacterium species on the basis of their characteristic metabolite profiles
A new method has been developed for the identification and classification of various tuberculosis (TB) causing and non-TB Mycobacterium species on the basis of their characteristic metabolite profiles.1
A modified Bligh-Dyer extraction procedure was used to extract lipid components from Mycobacterium tuberculosis, M. avium, M. bovis and M. kansasii cultures. Principle component analyses (PCA) were applied to the GC–MS generated data and showed a clear differentiation between all the species tested. The twelve compounds that best showed the variation between the sample groups were identified and classed as potential metabolite markers, using PCA and partial least-squares discriminant analysis (PLS–DA). These markers were then used to build a Bayesian statistical classification model. The model identified 2 ‘unknown’ samples for each of the Mycobacterium species analysed, with probabilities ranging from 72–100%.
The test had the advantage of speed and could be performed in under 16 h. The detection limit was 1 × 103 bacteria mL21.
The study concluded that there was potential for a GC–MS, metabolomics pattern recognition approach to be used in TB diagnosis.
1. D. Toots et al., Journal of Microbiological Methods, 88(3), 419–426 (2012).
This story originally appeared in The Column. Click here to view that issue.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
PFAS Identified in Smartwatch and Fitness Bands Using LC–MS/MS
January 28th 2025“Forever chemicals” per- and polyfluoroalkyl substances (PFAS) have been found in smartwatch and fitness bands and analyzed using liquid chromatography tandem mass spectrometry (LC–MS/MS) and direct total oxidative precursor (dTOP) assay.