A new method has been developed for the identification and classification of various tuberculosis (TB) causing and non-TB Mycobacterium species on the basis of their characteristic metabolite profiles
A new method has been developed for the identification and classification of various tuberculosis (TB) causing and non-TB Mycobacterium species on the basis of their characteristic metabolite profiles.1
A modified Bligh-Dyer extraction procedure was used to extract lipid components from Mycobacterium tuberculosis, M. avium, M. bovis and M. kansasii cultures. Principle component analyses (PCA) were applied to the GC–MS generated data and showed a clear differentiation between all the species tested. The twelve compounds that best showed the variation between the sample groups were identified and classed as potential metabolite markers, using PCA and partial least-squares discriminant analysis (PLS–DA). These markers were then used to build a Bayesian statistical classification model. The model identified 2 ‘unknown’ samples for each of the Mycobacterium species analysed, with probabilities ranging from 72–100%.
The test had the advantage of speed and could be performed in under 16 h. The detection limit was 1 × 103 bacteria mL21.
The study concluded that there was potential for a GC–MS, metabolomics pattern recognition approach to be used in TB diagnosis.
1. D. Toots et al., Journal of Microbiological Methods, 88(3), 419–426 (2012).
This story originally appeared in The Column. Click here to view that issue.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.