No matter which ”version” of liquid–liquid extraction (LLE) method you wish to use, there are some fundamentals that need to be clearly understood, and perhaps principle among these is analyte physicochemical information.
To achieve the best selectivity and recovery, one needs to ensure that partitioning of target analytes from one phase into the other is as efficient as possible, and this is underpinned in most cases by some simple physicochemical information. The following information is recommended:
This information is available from a variety of sources, including:
So how can we use this information to design and optimize our LLE experiment? The first decision in designing any liquid extraction is the choice of extracting solvent, and this is driven by the relative hydrophobicity of the analyte molecule, which is reflected by its LogP(D) value.
The analyte LogP value indicates the partitioning value between aqueous and organic phases. The more highly positive the LogP value, the greater will be the extent of partitioning into the organic (extracting) phase. Analytes with increasingly negative LogP values will show much lower partitioning into the organic phase.
For ionogenic analytes, the optimum partitioning behavior from aqueous to organic will be achieved when the analyte in is the neutral form. For acids, the aqueous sample should be adjusted to pH units below the analyte pKa, and two pH units above the pKa for basic analytes.
Of course, the partitioning behavior of our target analytes is strongly influenced by the choice of organic extraction solvent, as the various solvents will also have a range of polarities that will influence their affinity for the analytes.
For more polar analytes—and here lower values of LogP(D) can also act as a good indicator of polarity—one may need to select an organic solvent that has a higher polarity index value, in order to optimize recovery of the analyte from the aqueous sample. The rules are fairly simple—try to match the polarity of your analyte with the polarity of the extraction solvent. If you cannot obtain a good polarity measure of the analyte, LogP(D) can be used as a surrogate, with lower LogP values indicating the need for a more polar extraction solvent, and vice versa.
Adding high-enough concentrations of simple salts to saturate the aqueous sample solution can increase the partition coefficient of hydrophilic analytes, and improve recovery into organic extraction solvents. The analyte solubility in the aqueous sample can be reduced by adding, for example, 3–5 M sodium sulphate to the sample solution, driving the target analytes into the organic phase, and improving recovery.
Of course, it is also possible to use”mixed” organic systems as the extraction solvent to further fine-tune the selectivity or the recovery of the target analytes from the sample. Here, one needs to develop an in-house screening approach, using solvent mixtures that have proven to be successful in your application area.
When considering solvent selection, one must always be mindful of the specificity of the extraction. Some organic solvents are able to solubilize a reasonable amount of water, and therefore can be expected to be less specific than those solvents in which water has much lower solubility.
The selectivity of the extraction experiment involving pH manipulation can be further improved using a technique known as back extraction. Once the target analytes are initially extracted into the organic phase, they can be re-extracted into a fresh aqueous phase where the pH has been manipulated to ensure the analytes are in the charged form, and therefore most highly hydrophilic. In this way, specificity of the extraction can be improved, as all neutral extractants will be left behind in the organic solvent, reducing the instances of co-elution, and achieving lower matrix background (and therefore lower detection limits). To ensure the highest recovery possible, the ratio of organic extraction solvent to aqueous sample should be high (or perhaps higher than is generally accepted as reasonable), and a ratio of 7:1 is considered somewhat of a generic optimum value. Obviously, the actual optimum value will depend upon the partition coefficient of the target analytes between the two solvents, and extraction solvents with high partition coefficients may require lower ratios, and vice versa.
The extraction time and method (vigor) of shaking also need to be optimized; how- ever, these are both reasonably simple to achieve using empirical methods.
Tony Taylor is the Chief Science Officer of ArchSciences Group and the Technical Director of CHROMacademy. Direct correspondence to: LCGCedit@mmhgroup.com.
New Study Uses MSPE with GC–MS to Analyze PFCAs in Water
January 20th 2025Scientists from the China University of Sciences combined magnetic solid-phase extraction (MSPE) with gas chromatography–mass spectrometry (GC–MS) to analyze perfluoro carboxylic acids (PFCAs) in different water environments.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ion used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Oasis or Sand Dune? Isolation of Psychedelic Compounds
January 20th 2025Magic mushrooms, once taboo, have recently experienced a renaissance. This new awakening is partially due to new findings that indicate the effects of psilocybin, and its dephosphorylated cousin psilocin may produce long lasting results for patients who might be struggling with anxiety, depression, alcohol and drug abuse, and post-traumatic stress disorder. Hamilton Company has developed a methodology for the isolation and identification of 5 common psychedelic compounds used in the potential treatment of disease. The PRP-1 HPLC column resin remains stable in the harsh alkaline conditions ideal for better separations.