Special Issues
The sensitive, selective, and real-time analysis characteristic of the SIFT-MS technique provides simple, robust, and continuous analysis of extremely diverse odor compounds at trace levels in air. This application note illustrates instantaneous, broad spectrum odor analysis with monitoring data from a chicken meat production facility.
The sensitive, selective, and real-time analysis characteristic of the SIFT-MS technique provides simple, robust, and continuous analysis of extremely diverse odor compounds at trace levels in air. This application note illustrates instantaneous, broad-spectrum odor analysis with monitoring data from a chicken meat production facility.
Odor compounds are chemically very diverse, making comprehensive analysis very challenging using conventional analytical technologies. Furthermore, odors tend to be dynamic, requiring fast response, whereas odor panels or lab-based analyses are expensive and based on time-averaged samples.
Alternatively, selected ion flow tube mass spectrometry (SIFT-MS) simultaneously detects and quantifies both organic and inorganic odorous compounds in real-time in air to pptv levels with no sample preparation (1,2). SIFT-MS is a direct mass spectrometry technique that utilizes multiple, rapidly switchable chemical ionization agents to deliver unparalleled real-time selectivity, absolute quantitation, and wide linear and dynamic ranges.
This application note illustrates how readily a SIFT-MS instrument can be applied on-site for comprehensive real-time odor analysis.
Experimental Conditions
A van-mounted Syft Technologies’ Voice200 SIFT-MS instrument was deployed at several chicken production facilities in South East Queensland, Australia, during September and October 2013.
Air from the poultry shed was sampled continuously by the SIFT-MS instrument using a flow-past configuration. A sampling pump drew air at a flow rate of a few liters per min through Teflon tubing and the SIFT-MS subsampled it at a flow rate of 25 sccm.
A diverse range of odorous compounds was targeted based on a study using GC–MS (3), augmented with other odorous compounds that are difficult to detect using traditional chromatographic methods (for example, ammonia and hydrogen sulfide).
Results
Figure 1 shows a 13-h snapshot of real-time data obtained while chickens were harvested and the shed cleared of used litter. A diverse range of odor compounds were detected and quantified, including ammonia, amines, hydrogen sulfide, organosulfur compounds, ketones, aldehydes, and organic acids. The odor profile changes dramatically over the analysis period, illustrating the value of continuous, broad-spectrum monitoring using SIFT-MS compared to time-averaged methods.
Figure 1: Comprehensive, continuous odor monitoring using SIFT-MS during harvesting of meat chickens and the subsequent clean out of the production shed.
Conclusions
The real-time, broad-spectrum analysis provided by SIFT-MS makes it ideally suited to continuous monitoring of odorous organic and inorganic compounds even at the very low concentrations required for investigation of odor complaints. The Syft Voice200ultra SIFT-MS solution provides a robust, easily deployed and operated package for on-site monitoring, but is equally at home in contract and research laboratories.
References
Syft Technologies
3 Craft Place, Christchurch 8024, New Zealand
tel. +64-3-338 6701, fax +64-3-338 6704
Website: www.syft.com
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
PFAS Identified in Smartwatch and Fitness Bands Using LC–MS/MS
January 28th 2025“Forever chemicals” per- and polyfluoroalkyl substances (PFAS) have been found in smartwatch and fitness bands and analyzed using liquid chromatography tandem mass spectrometry (LC–MS/MS) and direct total oxidative precursor (dTOP) assay.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Determination of 3-MCPD and Glycidol in oil by ISO 18363-1, AOCS Cd 29c-13, DGF C-VI 18 (10)
January 28th 2025Fully automated method for 3-MCPD and Glycidol determination in edible oil by GC-MS, based on the widely used methods ISO 18363-1, AOCS Cd 29c-13, and DGF C-VI 18 (10). The automated GC-MS determination of 3-MCPD and glycidol in edible oils with evaporation step and GC column backflush ensures low LODs by eliminating excess derivatization reagent for improved method stability and system ruggedness.
Determination of 3-MCPD, 2-MCPD and Glycidol in oil and fat by ISO 18363-4 Zwagerman/Overman
January 28th 2025Fully automated method for 3-MCPD, 2-MCPD and Glycidol determination in Edible Oil and Fat based on ISO 18363-4 - Zwagerman/Overman with validation data. A recent upgrade to PTV injection has further improved the quality and robustness of results. Fatty acid esters of 3- and 2-monochloropropanediol (3-MCPD-e, 2-MCPD-e) and glycidol (Gly-e) are process contaminants that are formed, for example, when edible oils and fats are refined. After ester cleavage during digestion in the human body they pose a relevant health risk and therefore need to be determined in edible oils and fats and in fat containing food.