During the North American Chemical Residue Workshop, scientists discussed predicting liquid chromatographic retention times to identify contaminants.
At the North American Chemical Residue Workshop on Tuesday, Julien Parinet of the ANSES Laboratory for Food Safety, presented a study on identifying contaminants, by-products, and metabolites. He also explained how predicting liquid chromatographic retention times (RT) can be useful in this process (1).
Using different approaches to predict LC retention times can be an efficient means of discriminating and selecting between several molecular formulas and structures.
A major part of this process involves developing quantitative structure-retention relationship (QSRR) models, which establish a link between a chemical structure and a property, in this case the chromatographic retention time. These models require both a wide selection of molecular descriptors based on known chemical structures and machine learning algorithms, which need constant optimization.
The seminar concluded with a methodology proposal partly based on QSRR, so that the annotation process (as published by Schymanski and colleagues in 2014) can be improved and secured further.
(1) Parinet, J.; Wong, J.; Wang, J.; Makni, Y.; Diallo, T.; Guérin, T. Liquid chromatographic retention time prediction models to secure and improve the feature annotation process in high-resolution mass spectrometry.In Book of Abstracts, 2023 North American Chemical Residue Workshop, Fort Lauderdale, Florida.
LCGC’s Year in Review: Highlights in Liquid Chromatography
December 20th 2024This collection of technical articles, interviews, and news pieces delves into the latest innovations in LC methods, including advance in high performance liquid chromatography (HPLC), ultrahigh-pressure liquid chromatography (UHPLC), liquid chromatography–mass spectrometry (LC–MS), and multidimensional LC.
Next Generation Peak Fitting for Separations
December 11th 2024Separation scientists frequently encounter critical pairs that are difficult to separate in a complex mixture. To save time and expensive solvents, an effective alternative to conventional screening protocols or mathematical peak width reduction is called iterative curve fitting.
Mobile Phase Buffers in Liquid Chromatography: A Review of Essential Ideas
December 11th 2024In this installment of "LC Troubleshooting," Dwight Stoll discusses several essential principles related to when and why buffers are important, as well as practical factors, such as commonly used buffering agents, that are recommended for use with different types of detectors.