Researchers with the US Department of Energy (DOE)?s Lawrence Berkeley National Laboratory (Berkeley Lab) have coupled an award-winning remote detection version of NMR/MRI technology with a version of chromatography designed specifically for microfluidic chips giving rise to a portable system for highly sensitive multi-dimensional chemical analysis that could not be achieved with conventional technologies.
Researchers with the US Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have coupled an award-winning remote detection version of NMR/MRI technology with a version of chromatography designed specifically for microfluidic chips giving rise to a portable system for highly sensitive multi-dimensional chemical analysis that could not be achieved with conventional technologies.
Alexander Pines, a faculty senior scientist in Berkeley Lab’s Materials Sciences Division and the Glenn T. Seaborg Professor of Chemistry at the University of California (UC) Berkeley led a collaboration in which a remote detection NMR/MRI technique that could rapidly identify the chemical constituents of samples in microfluidic “lab-on-a-chip” devices was used to perform analyses in a microscale monolithic chromatograph column. The work was described in a paper titled “Remotely Detected NMR for the Characterization of Flow and Fast Chromatographic Separations Using Organic Polymer Monoliths” in the journal of Analytical Chemistry.
Frantisek Svec, one of the co-authors of the paper and a chemist who directs the Organic and Macromolecular Synthesis facility at Berkeley Lab’s Molecular Foundry, a DOE nanonscience centre, developed the technology for the polymer monolithic column that made the coupling of the two techniques possible. “Polymer monoliths as a separation media can be compared to a single large particle that does not contain inter-particular voids,” says Svec. “As a result, all the mobile phase must pass through the stationary phase as convective flow rather than diffusion during chromatographic processes. This convective flow greatly accelerates the rate of analyte separation.”
Results using the remote NMR/MRI technique with the polymer monoliths showed a much better ability to discriminate between different analytes at the molecular level than comparable analysis using spectrometry based on either mass or optical properties.
For more information, visit www.lbl.govThis story originally appeared in The Column. Click here to view that issue.
Best of the Week: Food Analysis, Chemical Migration in Plastic Bottles, STEM Researcher of the Year
December 20th 2024Top articles published this week include the launch of our “From Lab to Table” content series, a Q&A interview about using liquid chromatography–high-resolution mass spectrometry (LC–HRMS) to assess chemical hazards in plastic bottles, and a piece recognizing Brett Paull for being named Tasmanian STEM Researcher of the Year.
Using LC-MS/MS to Measure Testosterone in Dried Blood Spots
December 19th 2024Testosterone measurements are typically performed using serum or plasma, but this presents several logistical challenges, especially for sample collection, storage, and transport. In a recently published article, Yehudah Gruenstein of the University of Miami explored key insights gained from dried blood spot assay validation for testosterone measurement.
Determination of Pharmaceuticals by Capillary HPLC-MS/MS (Dec 2024)
December 19th 2024This application note demonstrates the use of a compact portable capillary liquid chromatograph, the Axcend Focus LC, coupled to an Agilent Ultivo triple quadrupole mass spectrometer for quantitative analysis of pharmaceutical drugs in model aqueous samples.