Researchers have developed an alternative method to reduce interferences for the analysis of N-nitrosamines using GC coupled to HR-QTOF-MS.
boophuket/stock.adobe.com
Researchers have developed an alternative method to reduce interferences for the analysis of N-nitrosamines using gas chromatography (GC) coupled to high-resolution quadrupole time-of-flight mass spectrometry (HR-QTOF-MS) (1).
The existence of N-nitrosamines in water bodies has developed into a major environmental and public health concern as more evidence has emerged of their role as probable human carcinogens, mutagens, and teratogens (2). N-nitrosamines are pervasive in industrial manufacturing processes, as well as in tobacco smoke and in the disinfection of drinking water. They are found in surface waters, groundwaters, in the influents and effluents of wastewater treatment plants, and in drinking water (3). The formation of N-nitrosamines from precursors during water treatment processes causes further problems.
The World Health Organization (WHO) has set out guideline values for the analysis of nitrosamines in the nanograms per litre (ng/L) region, depending on the risk level estimates of the specific compound. Highly sensitive methods are now required to research nitrosamine occurrence in water. Current methods for nitrosamine detection use gas chromatography tandem mass spectrometry (GC–MS/MS) in positive chemical ionization (PCI) mode, however, the lowâmolecular-weight of nitrosamines leads to background ions that can interfere with their determination. Researchers theorized that such ion interference could be solved using high-resolution mass spectrometry and aimed to develop an alternative method that reduces background interference issues using a QTOF instrument.
Results indicated that the GC–PCI-QTOF-MS method developed in the study can provide sufficiently low detection limits for the determination of nitrosamines in water samples with excellent selectivity compared to the existing methods. This method offers a valuable alternative to those currently available and does not require large-volume injection.
References
Inside the Laboratory: The Richardson Group at the University of South Carolina
November 20th 2024In this edition of “Inside the Laboratory,” Susan Richardson of the University of South Carolina discusses her laboratory’s work with using electron ionization and chemical ionization with gas chromatography–mass spectrometry (GC–MS) to detect DBPs in complex environmental matrices, and how her work advances environmental analysis.
GC–MS Targeted Analysis of PFAS Helps Expand Knowledge of Toxicokinetic Data
November 1st 2024Limited toxicokinetic and toxicologic information is available about a diverse set of per- and polyfluoroalkyl substances (PFAS), but methods based on gas chromatography–tandem mass spectrometry (GC–MS/MS) can help unravel some of the mystery.