A biomarker with significant clinical and analytical potential in an enzyme present in many human diseases was determined at higher efficiency using liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS).
A study led by Lien Dejager of UCB Pharma in Braine l’Alleud, Belgium, proposed the use of liquid chromatography coupled to triple-quadrupole, or tandem, mass spectrometry (LC–MS/MS) in urinalysis to detect and quantify ε-(γ-glutamyl) lysine, an isopeptide seen as a significant biomarker for the enzyme transglutaminase 2 (TG2) (1).
TG2 is one of a family of enzymes that serve as catalysts for post-translational modification of a variety of proteins through the formation of ε-(γ-glutamyl) lysine cross-links. The enzyme is thought to be involved in wound response but has also been observed to be continually upregulated in chronic diseases distinguished by persistent tissue damage. In humans, some of these illnesses include pulmonary fibrosis, chronic kidney disease, and cirrhosis of the liver.
The 17-author study, published in the Journal of Chromatography A, posits that the levels of ε-(γ-glutamyl) lysine cross-links in biofluids such as urine could have significant function as diagnostic or monitoring biomarkers, and that a more rapid, efficient, and selective method for their detection, namely LC–MS/MS, could be useful in clinical decision-making and eventually, shorter clinical trials.
To date, the most widely accepted method of ε-(γ-glutamyl) lysine detection has been amino acid analysis, which is based on hydrolysis of proteins down to their composite amino acids, leaving the target isopeptide intact. Over a more than 30-year period, the chromatography deployed in this analysis has improved, especially in distinguishing the minor isopeptide peak from major amino acid peaks. But limitations still exist, particularly where levels of cross-linking are low relative to background protein levels, which is true not only in urine, but also in blood, bronchoalveolar lavage fluid (BALF), and spinal fluid.
Associated techniques that have been employed in attempts at further refinement include mass spectrometry (MS), strong cation exchange chromatography, and Fourier transform infrared spectroscopy (FT-IR). The LC–MS/MS method chosen for this study was developed from a mass spectrometry method published in 1984 that quantified ε-(γ-glutamyl) lysine in plant proteins, and was preceded by the initial steps of protein precipitation that removed major salts followed by a digestion process.
The sensitivity of the approaches concluding with the LC–MS/MS analysis of human urine showed detection of as low as 0.1 ng/mL of ε-(γ-glutamyl) lysine with a precision of less than 20% coefficient of variation (CV). However, limitations remain. Levels of ε-(γ-glutamyl) lysine in urine may typically fall within a range of 0.1–10 ng/mg, meaning some samples will be below the limit of quantification. The researchers suggested patients with some proteinuria, therefore, might be best suited for this analysis. But the study also said this newly devised method represents a significant improvement over the prior amino acid process, and could be used to monitor disease progression in cases where TG2 plays a role in pathology.
(1) Dejager, L.; Jairaj, M.; Jones, K.; et al. Development and validation of a liquid chromatography–triple quadrupole mass spectrometry method for the determination of isopeptide e-(g-glutamyl) lysine in human urine as biomarker for transglutaminase 2 cross-linked proteins. J. Chromatogr. A 2023, 1699, 464002. DOI: 10.1016/j.chroma.2023.464002
Inside the Laboratory: The Richardson Group at the University of South Carolina
November 20th 2024In this edition of “Inside the Laboratory,” Susan Richardson of the University of South Carolina discusses her laboratory’s work with using electron ionization and chemical ionization with gas chromatography–mass spectrometry (GC–MS) to detect DBPs in complex environmental matrices, and how her work advances environmental analysis.
RAFA 2024 Highlights: Cutting-Edge Chromatography Techniques for Food Safety and Food Analysis
November 18th 2024An illuminating session focusing on progress in analytical techniques used in food analysis took place on Wednesday 6 November 2024 at RAFA 2024 in Prague, The Czech Republic, including a talk on the analysis of 1000 toxins in 10 minutes.
RAFA 2024 Highlights: Contemporary Food Contamination Analysis Using Chromatography
November 18th 2024A series of lectures focusing on emerging analytical techniques used to analyse food contamination took place on Wednesday 6 November 2024 at RAFA 2024 in Prague, Czech Republic. The session included new approaches for analysing per- and polyfluoroalkyl substances (PFAS), polychlorinated alkanes (PCAS), Mineral Oil Hydrocarbons (MOH), and short- and medium-chain chlorinated paraffins (SCCPs and MCCPs).