In the first reported study of skeletal muscles in hibernating creatures by two-dimensional gel electrophoresis (2-DE), scientists from Korea have attempted to shed some light on the molecular processes behind atrophy prevention.
In the first reported study of skeletal muscles in hibernating creatures by two-dimensional gel electrophoresis (2-DE), scientists from Korea have attempted to shed some light on the molecular processes behind atrophy prevention.
Researchers from Yonsei University and the Korea Atomic Energy Research Institute, led by Dr. Inho Choi, studied the pectoral muscle of the Korean great tube-nosed bat (Murina leucogaster ognevi). They captured the bats in a natural cave in three different states: summer active (SA), winter hibernation (HB), and the early phase of arousal from hibernation (AR). Afterwards, they dissected the muscles from bats.
Electron microscopy was used to study the myofibrillar structures of the muscles and their contractile properties also were measured. These revealed that the muscles showed no signs of atrophy or tension reduction following winter hibernation.
The proteins were extracted from the muscles for 2-DE, for quantification by image analysis and identification by digestion with trypsin for mass spectrometric analysis. This proteomic analysis yielded 109 protein spots following 2-DE but only 38 were identified by database searching because there is no bat protein database: the rat database gave matches with the highest scores. Of these, 28 were deemed to be relevant to the study and they were separated into metabolic, stress, and sarcomeric proteins. (The sarcomer is the basic unit of the myofibril).
During hibernation, levels of most of the proteins in each class were maintained, while it was thought that most of these proteins should have fallen during the period of dormancy. That they remained steady or were increased supports the theory that periodic bouts of arousal help to prevent muscle atrophy in bats by boosting the cellular and biochemical processes. Stress proteins help to protect and retain myofibrillar proteins during rewarming.
RAFA 2024 Highlights: Contemporary Food Contamination Analysis Using Chromatography
November 18th 2024A series of lectures focusing on emerging analytical techniques used to analyse food contamination took place on Wednesday 6 November 2024 at RAFA 2024 in Prague, Czech Republic. The session included new approaches for analysing per- and polyfluoroalkyl substances (PFAS), polychlorinated alkanes (PCAS), Mineral Oil Hydrocarbons (MOH), and short- and medium-chain chlorinated paraffins (SCCPs and MCCPs).
Advancing Bladder Cancer Research with Mass Spectrometry: A FeMS Interview with Marta Relvas-Santos
November 12th 2024LCGC International interviewed FeMS Empowerment Award winner Marta Relvas-Santos on her use of mass spectrometry to identify potential biomarkers and therapies for bladder cancer. She also shared insights on her work with FeMS and advice for fellow scientists.