Exposure to flame retardant additives could be a contributing factor to the occurrence of feline hyperthyroidism (FH) in Swedish cats, according to a new study. The authors also suggest that pet cats can be studied as markers of environmental contamination in the home.
Photo Credit: SHINYA SASAKI/Aflo/Getty Images
Exposure to flame retardant additives could be a contributing factor to the occurrence of feline hyperthyroidism (FH) in Swedish cats, according to a new study published in the journal Environmental Science and Technology.1 The authors also suggest that pet cats can be studied as markers of environmental contamination in the home.
FH affects up to 10% of older cats (over 10 years old) causing symptoms such as weight loss, hyperactivity, and vomiting. It is characterized by elevated levels of free circulating thyroid hormones (THs) in blood serum, caused by overactive thyroid glands, but the cause is still not known. Recent research has suggested that environmental factors could be responsible, specifically exposure to polybrominated diphenyl ethers (PBDEs) used in flame-retardants.
Cat grooming behaviours mean that pet cats, especially indoor cats, have a higher level of exposure to house dust (and the chemicals contained within it) than humans. PBDEs are added to commercial products (including plastics and furniture), and leach out into the environment where they can accumulate in housedust that will come into contact with the fur of cats. Researchers in the USA were first to publish a study proposing a link between an increase in the use of PBDEs since the 1970s and an increase in the occurrence of FH in cats.2 Lead author of the new study, Jessica Norrgan, told The Column: “Prof. NilsâGunnar Lindkvist and Prof. Bernt Jones both veterinarians, were the initiator of this project. Working with cats, they had experienced this increase of FH also in Swedish pet cats and were interested in exploring it further as a collaboration with us at the environmental chemistry unit, ACES, Stockholm University.” She added: “This was something we wanted to build up on, and focus was to do it on individual basis and also look for phenolic compounds such as OHâPBDEs that have shown even higher potency to disrupt thyroid hormone system than the parent PBDEs.”
Serum samples were taken from pet cats in Sweden - 37 diagnosed with a hyperthyroid and 23 with normal thyroid status. Individual samples were analyzed to detect decabromo-biphenyl (BB-209), PBDEs, hydroxylated PBDEs (OH-PBDEs), and 2,3,6-TBP to determine differences between the exposures of hyperthyroid vs. healthy cats. Gas chromatography coupled with mass spectrometry (GC–MS) was performed to detect brominated compounds, and gas chromatography coupled with an electron capture detector (GC–ECD) was used to detect chlorinated compounds.
The study found that hyperthyroid cats had higher serum concentrations of PBDEs (BDE-99, BDE-153, and BDE-83), and CB-153. Surprising to the authors was the detection of BB-209 in all cat serum samples - its production and application was discontinued in 2000 - but the contaminant was detected while performing pilot analyses of dry cat food samples.
Norrgan told The Column: “This study is now part of my thesis work that not only focuses on determining body burden of brominated chemicals in euthyroid and hyperthyroid cats, but also looks at the cat as a biomarker for exposure to brominated chemicals in the home environment.” - B.D.
References
1. Jessica Norrgran, Bernt Jones, Anders Bignert, Ioannis Athanassiadis, and Åke Bergman, Environ. Sci. Technol.49, 5197–5114 (2015).
2. J.A. Dye, M. Venier, L. Zhu, C.R. Ward, R.A. Hites, and L.S. Birnbaum, Environ. Sci. Technol. 41(18), 6350–6356 (2007).
New Study Uses MSPE with GC–MS to Analyze PFCAs in Water
January 20th 2025Scientists from the China University of Sciences combined magnetic solid-phase extraction (MSPE) with gas chromatography–mass spectrometry (GC–MS) to analyze perfluoro carboxylic acids (PFCAs) in different water environments.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ion used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Oasis or Sand Dune? Isolation of Psychedelic Compounds
January 20th 2025Magic mushrooms, once taboo, have recently experienced a renaissance. This new awakening is partially due to new findings that indicate the effects of psilocybin, and its dephosphorylated cousin psilocin may produce long lasting results for patients who might be struggling with anxiety, depression, alcohol and drug abuse, and post-traumatic stress disorder. Hamilton Company has developed a methodology for the isolation and identification of 5 common psychedelic compounds used in the potential treatment of disease. The PRP-1 HPLC column resin remains stable in the harsh alkaline conditions ideal for better separations.