Exposure to flame retardant additives could be a contributing factor to the occurrence of feline hyperthyroidism (FH) in Swedish cats, according to a new study. The authors also suggest that pet cats can be studied as markers of environmental contamination in the home.
Photo Credit: SHINYA SASAKI/Aflo/Getty Images
Exposure to flame retardant additives could be a contributing factor to the occurrence of feline hyperthyroidism (FH) in Swedish cats, according to a new study published in the journal Environmental Science and Technology.1 The authors also suggest that pet cats can be studied as markers of environmental contamination in the home.
FH affects up to 10% of older cats (over 10 years old) causing symptoms such as weight loss, hyperactivity, and vomiting. It is characterized by elevated levels of free circulating thyroid hormones (THs) in blood serum, caused by overactive thyroid glands, but the cause is still not known. Recent research has suggested that environmental factors could be responsible, specifically exposure to polybrominated diphenyl ethers (PBDEs) used in flame-retardants.
Cat grooming behaviours mean that pet cats, especially indoor cats, have a higher level of exposure to house dust (and the chemicals contained within it) than humans. PBDEs are added to commercial products (including plastics and furniture), and leach out into the environment where they can accumulate in housedust that will come into contact with the fur of cats. Researchers in the USA were first to publish a study proposing a link between an increase in the use of PBDEs since the 1970s and an increase in the occurrence of FH in cats.2 Lead author of the new study, Jessica Norrgan, told The Column: “Prof. NilsâGunnar Lindkvist and Prof. Bernt Jones both veterinarians, were the initiator of this project. Working with cats, they had experienced this increase of FH also in Swedish pet cats and were interested in exploring it further as a collaboration with us at the environmental chemistry unit, ACES, Stockholm University.” She added: “This was something we wanted to build up on, and focus was to do it on individual basis and also look for phenolic compounds such as OHâPBDEs that have shown even higher potency to disrupt thyroid hormone system than the parent PBDEs.”
Serum samples were taken from pet cats in Sweden - 37 diagnosed with a hyperthyroid and 23 with normal thyroid status. Individual samples were analyzed to detect decabromo-biphenyl (BB-209), PBDEs, hydroxylated PBDEs (OH-PBDEs), and 2,3,6-TBP to determine differences between the exposures of hyperthyroid vs. healthy cats. Gas chromatography coupled with mass spectrometry (GC–MS) was performed to detect brominated compounds, and gas chromatography coupled with an electron capture detector (GC–ECD) was used to detect chlorinated compounds.
The study found that hyperthyroid cats had higher serum concentrations of PBDEs (BDE-99, BDE-153, and BDE-83), and CB-153. Surprising to the authors was the detection of BB-209 in all cat serum samples - its production and application was discontinued in 2000 - but the contaminant was detected while performing pilot analyses of dry cat food samples.
Norrgan told The Column: “This study is now part of my thesis work that not only focuses on determining body burden of brominated chemicals in euthyroid and hyperthyroid cats, but also looks at the cat as a biomarker for exposure to brominated chemicals in the home environment.” - B.D.
References
1. Jessica Norrgran, Bernt Jones, Anders Bignert, Ioannis Athanassiadis, and Åke Bergman, Environ. Sci. Technol.49, 5197–5114 (2015).
2. J.A. Dye, M. Venier, L. Zhu, C.R. Ward, R.A. Hites, and L.S. Birnbaum, Environ. Sci. Technol. 41(18), 6350–6356 (2007).
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.
Inside the Laboratory: The Richardson Group at the University of South Carolina
November 20th 2024In this edition of “Inside the Laboratory,” Susan Richardson of the University of South Carolina discusses her laboratory’s work with using electron ionization and chemical ionization with gas chromatography–mass spectrometry (GC–MS) to detect DBPs in complex environmental matrices, and how her work advances environmental analysis.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Infographic: Be confidently audit ready, at any time and reduce failures in pharma QC testing
November 20th 2024Discover how you can simplify the audit preparation process with data integrity dashboards that provide transparency to key actions, and seamlessly track long-term trends and patterns, helping to prevent system suitability failures before they occur with waters_connect Data Intelligence software.
Critical Role of Oligonucleotides in Drug Development Highlighted at EAS Session
November 19th 2024A Monday session at the Eastern Analytical Symposium, sponsored by the Chinese American Chromatography Association, explored key challenges and solutions for achieving more sensitive oligonucleotide analysis.