Researchers have investigated the use of size-exclusion chromatography (SEC) for size distribution analysis of influenza virus particles.
Photo Credit: Liya Graphics/Shutterstock.com
Researchers have investigated the use of size-exclusion chromatography (SEC) for size distribution analysis of influenza virus particles (1).
Influenza pandemics have been a common occurrence throughout history, devastating continents and countries with drastically differing mortality rates. This variation in mortality rate stems from great variation present within the influenza genome. However, with the advent of vaccination and a greater understanding of the influenza virus, controlling those outbreaks has become easier. However, the complexity of the influenza virus demands a complex vaccine, which in turn demands robust vaccine analysis methods.
The influenza vaccine utilizes inactivated whole virus particles to be effective and, according to the European Pharmacopoeia, requires 15 µg of haemagglutinin (HA) antigen for each present virus strain in a trivalent human vaccine to be released (2). One of the two most abundant surface proteins in influenza A viruses, HA quantity is the guiding parameter by which vaccine effectiveness is judged.
Currently, HA quantification relies on two methods: the single radial immunodiffusion (SRID) assay and the HA assay. While SRID is based upon antigen binding and is considered the gold standard for the release of human vaccines, the HA assay is more antiquated relying on the clumping of red blood cells. While the HA assay is widely accepted, it has a number of flaws including the lack of standardization, its discrete format, deviations as a result of red blood cell ageing (3), and secondary interactions of pH, buffer ions (4), and other compounds in complex virus samples, as well as providing no insight into the size distribution of virus particles.
Addressing these issues has grown in importance in the last few years, as authorities push for deeper understanding and control through process analytical technologies. Public institutions, such as the European Medicine Agency (EMA), encourage research in the field to complement the SRID assay (5) and investigating size, content, and immunogenicity of aggregates in the drug product or substance is recommended.
To address this issue, researchers have recently turned to SEC because it is nonâdestructive and has been used for decades to analyze the aggregate and fragment content of therapeutic proteins (6). Despite its promise, challenges remain in implementing SEC in influenza particle investigations. The availability of SEC columns that allow for size distribution of large virus particles is limited, and there are issues surrounding adsorption.
Researchers developed a comparatively robust method regarding different buffer systems, ionic strength, and additive concentrations. They confirmed the results by dynamic light scattering and demonstrated the methods applicability with three different influenza virus samples.
The researchers then used SEC to determine valuable data regarding the size distribution of influenza virus samples. This data, when considered in combination with data gained from HA assays and SRID, provides a much more detailed picture of HA activity. The complementary technique may benefit future purification processes with a more detailed picture of virus size distribution and how it is affected during the different steps of downstream processing.- L.B.
References
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.
Inside the Laboratory: The Richardson Group at the University of South Carolina
November 20th 2024In this edition of “Inside the Laboratory,” Susan Richardson of the University of South Carolina discusses her laboratory’s work with using electron ionization and chemical ionization with gas chromatography–mass spectrometry (GC–MS) to detect DBPs in complex environmental matrices, and how her work advances environmental analysis.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Infographic: Be confidently audit ready, at any time and reduce failures in pharma QC testing
November 20th 2024Discover how you can simplify the audit preparation process with data integrity dashboards that provide transparency to key actions, and seamlessly track long-term trends and patterns, helping to prevent system suitability failures before they occur with waters_connect Data Intelligence software.
Critical Role of Oligonucleotides in Drug Development Highlighted at EAS Session
November 19th 2024A Monday session at the Eastern Analytical Symposium, sponsored by the Chinese American Chromatography Association, explored key challenges and solutions for achieving more sensitive oligonucleotide analysis.