An excerpt from LCGC's e-learning tutorial on preparative HPLC at CHROMacademy.com
The primary objective of an analytical-scale separation is to produce a chromatogram with sharp, well resolved, symmetrical peaks to yield the required analytical information. The goal of preparative-scale HPLC is to produce a quantity of pure compound as easily as possible in the most economical way, ultimately depositing the sample into a sample collector vessel prior to recovery from the eluent.
Preparative chromatography can be performed with an analytical column (and system) to produce a few micrograms of material up to process scale, providing a ton quantities of sample which use 1 mlong columns with 200 mm i.d. The larger the quantity of analyte required, the further the technique is removed from analytical chromatography, both in terms of scale and ideology; the bigger the scale, the more "nonchromatographic" parameters have to be considered. Some key downstream considerations in preparative chromatography include:
Many preparative separations undertaken within the laboratory begin life with a separation carried out at analytical scale. One must develop an analytical method in which the selectivity of the target analytes is maximized. In this way, the amount of analyte that can be loaded onto the column (and hence recovered from the column) per injection is optimized. Elution of analytes in more highly organic fractions is preferred from a sample recovery perspective as these fractions are more quickly and cost effectively processed.
Studies of the "loadability" of an analytical column are typically carried out using a "standard" analytical column with 150 mm × 4.6 mm dimensions and 5-µm packing material. As the analyte amount on the column increases, the peak shape will deteriorate until resolution is lost between the target analytes; this capacity determines the column loadability for a "touching band" type preparative separation. It is possible to "heart-cut" overlapping bands within a separation (where selectivity cannot be further optimized for example), and the fractions can be reinjected to obtain increasingly pure material — however, this approach is much more cumbersome. In separations where selectivity is not the limiting factor, the loading capacity of the column is typically defined by breakthrough, the point at which increasing the amount of analyte on column does not increase peak height or area because the excess analyte cannot bind to the stationaryphase surface.
When the sample of interest has good solubility in the mobile phase, concentration overload is the technique of choice and sample concentration is increased while the injected sample volume remains constant. Column efficiency (as dictated by particle size) has little effect on concentration overloading, and the selectivity of the separation tends to be the dominant factor. When increasing the sample concentration, it may be necessary to use cosolvents within the diluent (dimethyl sulfoxide and dimethylformamide are popular) to improve sample solubility. If the diluent is more highly eluotropic than the eluent, however, problems can arise with peak shape and with precipitation during postinjection mixing with the eluent (which limits loadability).
When the sample of interest has limited solubility in the mobile phase, then volume overload is the technique of choice and sample volume is increased while the sample concentration remains constant. Volume overloading is heavily influenced by stationary-phase particle size and column diameter. Most preparative chromatography methods use a mixture of concentration and volume overloading to obtain the maximum amount of analyte on column per injection.
After the analytical-scale method has been developed and the loading factor has been estimated, the method can be scaled up using various simple calculations and estimation methods. Scalable factors include eluent flow rate, column internal diameter, gradient profile, sample volume loaded, solvent consumption, total fraction volume and yield. A detailed treatment of various approaches to method scaleup can be found in the accompanying CHROMacademy Essential Guide online article.
Preparative HPLC equipment differs from analytical scale only in the capability to deliver very high flow rates (100 mL/min is not unusual in a laboratoryscale semipreparative separation), and typically the inclusion of a fractioncollection device for automated sample recovery. Preparative fractions are typically collected by means of a diverter valve that can be triggered either by time settings or detector signal. If the fraction collection is time based, then one must take care to avoid analyte retention time drift. Where the collection is triggered by mass (using mass spectrometry [MS] detection), a response threshold or a rate of change in detector response, the delay volume (time) between the detector and the fraction collector nozzle must be carefully calibrated to ensure precious sample is not lost.
New Study Uses MSPE with GC–MS to Analyze PFCAs in Water
January 20th 2025Scientists from the China University of Sciences combined magnetic solid-phase extraction (MSPE) with gas chromatography–mass spectrometry (GC–MS) to analyze perfluoro carboxylic acids (PFCAs) in different water environments.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ion used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Oasis or Sand Dune? Isolation of Psychedelic Compounds
January 20th 2025Magic mushrooms, once taboo, have recently experienced a renaissance. This new awakening is partially due to new findings that indicate the effects of psilocybin, and its dephosphorylated cousin psilocin may produce long lasting results for patients who might be struggling with anxiety, depression, alcohol and drug abuse, and post-traumatic stress disorder. Hamilton Company has developed a methodology for the isolation and identification of 5 common psychedelic compounds used in the potential treatment of disease. The PRP-1 HPLC column resin remains stable in the harsh alkaline conditions ideal for better separations.