An excerpt from LCGC's e-learning tutorial on preparative HPLC at CHROMacademy.com
The primary objective of an analytical-scale separation is to produce a chromatogram with sharp, well resolved, symmetrical peaks to yield the required analytical information. The goal of preparative-scale HPLC is to produce a quantity of pure compound as easily as possible in the most economical way, ultimately depositing the sample into a sample collector vessel prior to recovery from the eluent.
Preparative chromatography can be performed with an analytical column (and system) to produce a few micrograms of material up to process scale, providing a ton quantities of sample which use 1 mlong columns with 200 mm i.d. The larger the quantity of analyte required, the further the technique is removed from analytical chromatography, both in terms of scale and ideology; the bigger the scale, the more "nonchromatographic" parameters have to be considered. Some key downstream considerations in preparative chromatography include:
Many preparative separations undertaken within the laboratory begin life with a separation carried out at analytical scale. One must develop an analytical method in which the selectivity of the target analytes is maximized. In this way, the amount of analyte that can be loaded onto the column (and hence recovered from the column) per injection is optimized. Elution of analytes in more highly organic fractions is preferred from a sample recovery perspective as these fractions are more quickly and cost effectively processed.
Studies of the "loadability" of an analytical column are typically carried out using a "standard" analytical column with 150 mm × 4.6 mm dimensions and 5-µm packing material. As the analyte amount on the column increases, the peak shape will deteriorate until resolution is lost between the target analytes; this capacity determines the column loadability for a "touching band" type preparative separation. It is possible to "heart-cut" overlapping bands within a separation (where selectivity cannot be further optimized for example), and the fractions can be reinjected to obtain increasingly pure material — however, this approach is much more cumbersome. In separations where selectivity is not the limiting factor, the loading capacity of the column is typically defined by breakthrough, the point at which increasing the amount of analyte on column does not increase peak height or area because the excess analyte cannot bind to the stationaryphase surface.
When the sample of interest has good solubility in the mobile phase, concentration overload is the technique of choice and sample concentration is increased while the injected sample volume remains constant. Column efficiency (as dictated by particle size) has little effect on concentration overloading, and the selectivity of the separation tends to be the dominant factor. When increasing the sample concentration, it may be necessary to use cosolvents within the diluent (dimethyl sulfoxide and dimethylformamide are popular) to improve sample solubility. If the diluent is more highly eluotropic than the eluent, however, problems can arise with peak shape and with precipitation during postinjection mixing with the eluent (which limits loadability).
When the sample of interest has limited solubility in the mobile phase, then volume overload is the technique of choice and sample volume is increased while the sample concentration remains constant. Volume overloading is heavily influenced by stationary-phase particle size and column diameter. Most preparative chromatography methods use a mixture of concentration and volume overloading to obtain the maximum amount of analyte on column per injection.
After the analytical-scale method has been developed and the loading factor has been estimated, the method can be scaled up using various simple calculations and estimation methods. Scalable factors include eluent flow rate, column internal diameter, gradient profile, sample volume loaded, solvent consumption, total fraction volume and yield. A detailed treatment of various approaches to method scaleup can be found in the accompanying CHROMacademy Essential Guide online article.
Preparative HPLC equipment differs from analytical scale only in the capability to deliver very high flow rates (100 mL/min is not unusual in a laboratoryscale semipreparative separation), and typically the inclusion of a fractioncollection device for automated sample recovery. Preparative fractions are typically collected by means of a diverter valve that can be triggered either by time settings or detector signal. If the fraction collection is time based, then one must take care to avoid analyte retention time drift. Where the collection is triggered by mass (using mass spectrometry [MS] detection), a response threshold or a rate of change in detector response, the delay volume (time) between the detector and the fraction collector nozzle must be carefully calibrated to ensure precious sample is not lost.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.