Four new ozone-depleting substances (ODSs) - CFC–1121, CFC–112a, CFC–113a, and HCF–133a - have been detected and identified in the Earth's atmosphere using gas chromatography–mass spectrometry (GC–MS).1 The research published in Nature Geoscience compared samples collected between 1978 and 2012 to establish a clear increase in the emissions of these gases, even though CFC production has been banned globally since 1987.
Photo Credit: Photosearch/Getty Images
Four new ozone-depleting substances (ODSs) — CFC-1121, CFC-112a, CFC-113a, and HCF-133a — have been detected and identified in the Earth’s atmosphere using gas chromatography–mass spectrometry (GC–MS).1 The research published in Nature Geoscience compared samples collected between 1978 and 2012 to establish a clear increase in the emissions of these gases, even though CFC production has been banned globally since 1987.
More than 25 years have passed since the discovery of the hole in the ozone layer above Antarctica, now linked to changes in climate. Man-made gases were linked to the destruction of the ozone layer, in particular chlorofluorocarbons (CFCs) and their intermediates hydrofluorocarbons (HCFCs).
Johannes Laubes, lead investigator of the study said: “CFCs are the main cause of the hole in the ozone layer over Antarctica. Laws to reduce and phase out CFCs came into force in 1989, followed by a total ban in 2010. This has resulted in successfully reducing the production of many of these compounds on a global scale. However, legislation loopholes still allow some usage for exempted purposes.” Exempted purposes, as referred to by Laubes, refer to the use of CFCs as feed-stocks and intermediates in the production of chemicals such as insecticides and electronic cleaning products.
The gases were identified, using GC–MS, in atmospheric samples collected as part of the Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container (CARIBIC) project on flights between Germany and South Africa between 2009 and 2011.2 To establish a timeline and to model the accumulation of the gases, atmospheric samples collected from above Tasmania, Australia between 1978 and 2012 were also analyzed. Previously published data from the analysis of deep snow firns in Greenland was used to build a reconstruction of past gas concentrations.
Laube told LCGC that there were various challenges in the analysis. He said: “Firstly, their concentrations are very small, less than 1 part per trillion (ppt) per part of air. In combination with limited sample sizes (especially for air samples collected in the stratosphere, where ambient pressures fall below 50 mbar), it is often hard to get the high precision data you need for reconstructing atmospheric spatial and temporal concentration gradients. And secondly, there are thousands of trace gases present in air, and they are being emitted from a large variety of sources. So we are dealing with a comparably and variable complicated matrix.”
The team found that the gases have accumulated since the 1960s, but accumulation in Tasmania has lagged behind the Antarctica, suggesting emission of the gases from the Northern hemisphere. The team estimated, using the GC–MS data and modeling, that the total emissions of the four gases up to 2012 was 74,000 tonnes.
Laube said: “At their current concentrations these gases do not pose a big threat to the ozone layer. However, two of them continue to increase in concentration. Especially, CFC-113a, has started to accelerate its increase in recent years. If such an acceleration continued, it could become a big problem in the next years. But we are here in a very good position (unlike for many other environmental problems) to be able to deal with it before it happens.”
Reference
1. J. C. Laube et al, Nature Geoscience, DOI:10.1038/ngeo2109
(2014). http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo2109.html
2. Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container, http://www.caribic-atmospheric.com/ [Last accessed: March 14 2014]
This article was first featured in The Column. Click here to view or print that issue>>
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.
Inside the Laboratory: The Richardson Group at the University of South Carolina
November 20th 2024In this edition of “Inside the Laboratory,” Susan Richardson of the University of South Carolina discusses her laboratory’s work with using electron ionization and chemical ionization with gas chromatography–mass spectrometry (GC–MS) to detect DBPs in complex environmental matrices, and how her work advances environmental analysis.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Infographic: Be confidently audit ready, at any time and reduce failures in pharma QC testing
November 20th 2024Discover how you can simplify the audit preparation process with data integrity dashboards that provide transparency to key actions, and seamlessly track long-term trends and patterns, helping to prevent system suitability failures before they occur with waters_connect Data Intelligence software.
Critical Role of Oligonucleotides in Drug Development Highlighted at EAS Session
November 19th 2024A Monday session at the Eastern Analytical Symposium, sponsored by the Chinese American Chromatography Association, explored key challenges and solutions for achieving more sensitive oligonucleotide analysis.