Three different metrics were used experimentally, based on measurements of both NIST Standard Reference Material (SRM) 1950 and data obtained from murine kidney tissue.
A study recently published in the Journal of the American Society for Mass Spectrometry presents a strategy for the signal response evaluation of untargeted mass spectrometry (MS) data—in particular, according to the authors, ultrahigh-pressure liquid chromatography (UHPLC) coupled to high-resolution mass spectrometry (HRMS) (1). The objective the researchers aimed to achieve was to remedy shortcomings in feature finding, or feature filtering, meant to identify differences in sample groups. Too often, they said, the minimization of false discoveries in feature filtering leads to the filtering out of true discoveries.
The authors, Kirsten E. Overdahl, Justin B. Collier, Anton M. Jetten, and Alan K. Jarmusch, all of whom are affiliated with the Immunity, Inflammation, and Disease Laboratory in the National Institute of Environmental Health Sciences at the National Institutes of Health in Durham, North Carolina, USA, demonstrated their hypothesis in metabolomics measurements from two sources, one a uniform biological matrix, namely the National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 1950, human plasma, and the other source being a variable biological matrix (murine kidney tissue) (1).
As the authors define in their study, untargeted MS encompasses courses of study such as metabolomics and lipidomics, but the myriad ways in which the technique is employed make data processing and interpretation quite complex (1). Feature-finding software, they said, can be of assistance in separating data into key descriptors such as mass-to-charge ratio (m/z), retention time, and mobility.
A portion of this study was spent reviewing prior attempts in the lab and literature to solve the dilemma of feature measurement. To establish this conundrum, the authors explained that a relationship that is fundamental to all MS measurements is that which exists between concentration and sample, which is both matrix- and analyte-specific and influenced by electrospray ionization (EI) (1). In this evaluation of previous work, the researchers mentioned several attempts at a quality control (QC) dilution series, but said that even with individual feature response profiles, linear response assessment tended to skew Pearson correlation values, emphasizing the need for additional solutions.
To that end, the research team supplemented Pearson correlations, which evaluate linear response, with two other metrics including Spearman’s ρ, for monotonic response, and coefficient of determination R2, to fit to a linear model (1). The reason for the additional metrics was the hypothesis that if more material was present, the signal would correspondingly increase, providing flexibility in data assessment.
A summary of the team’s findings highlighted one result in particular from this approach, which was that a chemical the researchers deemed “putatively exogenous,” ethylenediaminetetraacetic acid (EDTA), in the case of NIST SRM 1950, was removed from downstream consideration, supporting the theory that features not “true” of the biological sample would be taken out in these processes. With regard to the murine kidney tissue, filtering resulted in a stronger correlation between intergroup separation and total observed variance. The researchers recommended their method of evaluation in untargeted MS and, because a priori chemical knowledge and standards are not required, suggested it could be used broadly in the future.
(1) Overdahl, K. E.; Collier, J. B.; Jetten, A. M.; Jarmusch, A. K. Signal Response Evaluation Applied to Untargeted Mass Spectrometry Data to Improve Data Interpretability. J. Am. Soc. Mass Spectrom. 2023, 34 (9), 1941–1948. DOI: 10.1021/jasms.3c00220
Inside the Laboratory: The Richardson Group at the University of South Carolina
November 20th 2024In this edition of “Inside the Laboratory,” Susan Richardson of the University of South Carolina discusses her laboratory’s work with using electron ionization and chemical ionization with gas chromatography–mass spectrometry (GC–MS) to detect DBPs in complex environmental matrices, and how her work advances environmental analysis.
RAFA 2024 Highlights: Cutting-Edge Chromatography Techniques for Food Safety and Food Analysis
November 18th 2024An illuminating session focusing on progress in analytical techniques used in food analysis took place on Wednesday 6 November 2024 at RAFA 2024 in Prague, The Czech Republic, including a talk on the analysis of 1000 toxins in 10 minutes.
RAFA 2024 Highlights: Contemporary Food Contamination Analysis Using Chromatography
November 18th 2024A series of lectures focusing on emerging analytical techniques used to analyse food contamination took place on Wednesday 6 November 2024 at RAFA 2024 in Prague, Czech Republic. The session included new approaches for analysing per- and polyfluoroalkyl substances (PFAS), polychlorinated alkanes (PCAS), Mineral Oil Hydrocarbons (MOH), and short- and medium-chain chlorinated paraffins (SCCPs and MCCPs).