We discuss polyolefins and high temperature GPC in terms of engineering advances.
The first GPC instrument incorporated a pump, an injection valve, a column oven and a RI detector. Quite some engineering ingenuity was required in those days to have a constant flow pump that was particularly required in GPC, where a small change in flow could cause large molar mass errors, and to have a stable RI detector at high temperature (with RI being known to have strong temperature dependency). It is interesting to notice that the very first GPC was targeted at high temperature applications. This certainly showed the importance that the knowledge of the molar mass distribution of polyolefins had in the design of new resins. This leads us on to discuss polyolefins and high temperature GPC in terms of engineering advances.
Best of the Week: Food Analysis, Chemical Migration in Plastic Bottles, STEM Researcher of the Year
December 20th 2024Top articles published this week include the launch of our “From Lab to Table” content series, a Q&A interview about using liquid chromatography–high-resolution mass spectrometry (LC–HRMS) to assess chemical hazards in plastic bottles, and a piece recognizing Brett Paull for being named Tasmanian STEM Researcher of the Year.
Using LC-MS/MS to Measure Testosterone in Dried Blood Spots
December 19th 2024Testosterone measurements are typically performed using serum or plasma, but this presents several logistical challenges, especially for sample collection, storage, and transport. In a recently published article, Yehudah Gruenstein of the University of Miami explored key insights gained from dried blood spot assay validation for testosterone measurement.
Determination of Pharmaceuticals by Capillary HPLC-MS/MS (Dec 2024)
December 19th 2024This application note demonstrates the use of a compact portable capillary liquid chromatograph, the Axcend Focus LC, coupled to an Agilent Ultivo triple quadrupole mass spectrometer for quantitative analysis of pharmaceutical drugs in model aqueous samples.