A group of researchers in the USA has carried out an investigation using both gas chromatography-mass spectrometry (GC?MS) and inductively coupled plasma mass spectrometry (ICP?MS) to reveal that engineered nanoparticles can accumulate within plants and damage their DNA.
A group of researchers in the USA has carried out an investigation using both gas chromatography-mass spectrometry (GC–MS) and inductively coupled plasma mass spectrometry (ICP–MS) to reveal that engineered nanoparticles can accumulate within plants and damage their DNA.1 These engineered nanoparticles are found in many commercial products and are often released into the environment. In the past it has been shown that metal‑based nanomaterials act as mediators of DNA damage in mammalian cells and organisms, but for the first time copper oxide nanoparticles have been revealed to induce DNA damage in agricultural and grassland plants.
The tests were performed on radish (Raphanus sativus), perennial ryegrass (Lolium perenne) and annual ryegrass (Lolium rigidum). GC–MS detected base lesions and ICP–MS measured copper uptake. There was significant accumulation of oxidatively modified, mutagenic DNA lesions and plant growth inhibition was observed. The lesion levels were measured in tandem to clarify the mechanisms of DNA damage.
The group concluded that they had produced the first evidence of multiple DNA lesion formation in plants and that this provided the basis for further research.
1. Bryant C. Nelson et al.,
Environmental Science and Technology
,
46
(3), 1819–1827 (2012).
This story originally appeared in The Column. Click here to view that issue.
Best of the Week: Food Analysis, Chemical Migration in Plastic Bottles, STEM Researcher of the Year
December 20th 2024Top articles published this week include the launch of our “From Lab to Table” content series, a Q&A interview about using liquid chromatography–high-resolution mass spectrometry (LC–HRMS) to assess chemical hazards in plastic bottles, and a piece recognizing Brett Paull for being named Tasmanian STEM Researcher of the Year.
Using LC-MS/MS to Measure Testosterone in Dried Blood Spots
December 19th 2024Testosterone measurements are typically performed using serum or plasma, but this presents several logistical challenges, especially for sample collection, storage, and transport. In a recently published article, Yehudah Gruenstein of the University of Miami explored key insights gained from dried blood spot assay validation for testosterone measurement.
Determination of Pharmaceuticals by Capillary HPLC-MS/MS (Dec 2024)
December 19th 2024This application note demonstrates the use of a compact portable capillary liquid chromatograph, the Axcend Focus LC, coupled to an Agilent Ultivo triple quadrupole mass spectrometer for quantitative analysis of pharmaceutical drugs in model aqueous samples.