Researchers from Imperial College London and the University of Aberdeen have identified disease markers for Human African Trypanosomiasis (HAT), commonly known as “sleeping sickness”. Using reversed-phase ultrahigh‑performance liquid chromatography coupled to mass spectrometry (UHPLC–MS) and proton nuclear magnetic resonance (1H NMR) spectroscopy researchers found 53 discriminatory metabolite markers.
Photo Credit: Stocktrek Images/Getty Images
Researchers from Imperial College London and the University of Aberdeen have identified disease markers for Human African Trypanosomiasis (HAT), commonly known as “sleeping sickness”.1 Using reversed-phase ultrahigh-performance liquid chromatography coupled to mass spectrometry (UHPLC–MS) and proton nuclear magnetic resonance (1H NMR) spectroscopy researchers found 53 discriminatory metabolite markers.
Sleeping sickness is prominent throughout large portions of Africa causing significant death and disease. Infection is caused by two subspecies of Trypanosoma brucei (T.b.) transmitted via tsetse fly vectors. T.b. gambiense is endemic within Western Africa while T.b. rhodiesiense is more prominent within Eastern and Southern Africa. The latter is typically fatal in less than a year if infection is untreated.
Routine screening and rapid diagnostic tests are available for T.b. gambiense. However, no such test exists for T.b. rhodiesiense, making diagnosis the biggest challenge in the treatment and control of this disease.
To produce an effective diagnostic test researchers required markers that differentiate infected individuals from uninfected individuals to use in diagnostic screening. 1H NMR was used to screen plasma for variant surface glycoproteins (markers). Previous research had highlighted marked changes in plasma lipids in infected individuals.2,3,4 Consequently reversed-phase UHPLC–MS was used to characterize lipid profiles.
Large variations were found in plasma profiles, specifically in lipid and amino acids, through both 1H NMR and reversed-phase UHPLC–MS. Sixteen disease markers were identified by NMR while UHPLC identified a further 37 markers. The authors hope these markers can be used to create a novel and rapid screening procedure for T.b. rhodiesiense. - L.B.
References
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.