The timsTOF Pro platform, introduced in 2017, already featured a sensitivity boost from the Parallel Accumulation Serial Fragmentation (PASEF®) technology, which provides time-and-space focusing of the ions in the Trapped Ion Mobility Spectrometry (TIMS) tunnel. The timsTOF SCP platform further enhances the sensitivity with robustly modified ion optic design. This boost in sensitivity enables measurement of low nanogram and sub-nanogram peptide loads, resulting in quantification of a few thousand protein groups per injection. Our data from as low as 200 pg of peptide loads demonstrates the applicability to unbiased true single cell proteomics in a routine fashion.
Single-cell ‘omics in recent years has highlighted the microheterogeneity in clonal populations. Unlike other ’omics technologies, single-cell proteomics is hindered by lack of amplification techniques for protein molecules. Single-cell proteomics is now beginning to get attention, and one common strategy is to multiplex labeled single cells together with carrier samples to boost the sensitivity in detection. Further improvements in sophisticated sample preparation techniques have resulted in increased peptide yield that is delivered to the liquid chromatography–mass spectrometry (LC–MS) instrumentation (1). While these improvements upstream of sample measurement have improved the analysis depth, the raw sensitivity requires improvement as well without compromising robustness. Parallel Accumulation and Serial Fragmention (PASEF) (2) on the timsTOF Pro platform makes efficient usage of the ion beam and with intelligent precursor placement within a TIMS cycle achieves rapid-sequencing speed. In addition, the ions get focused in space and time within the TIMS cell, resulting in a significant boost in sensitivity. This enables the analysis of low sample amounts, in the range of low-nanogram peptide loads. The newly designed timsTOF SCP’s ion optics allow a 4–5× improvement in ion current by increasing the ion brightness while maintaining the robustness of the timsTOF Pro. As the yield of the electrospray ionization increases with lower flow rates, we further enhanced the experiment’s overall sensitivity by coupling the timsTOF SCP to an Evosep One (Evosep Biosystems) instrument operated with the new low-flow Whisper methods. We have characterized the resulting system’s performance by injecting and measuring peptide loads mimicking the amount resulting from a single-cell preparation.
The new ion optic design of the timsTOF SCP system includes switching the orientation of the ion optics with inclusion of an additional ion funnel and additional orthogonal turns of the ion beam to preserve the robustness of the instrument. The source contained a wider glass capillary orifice that draws more ions into an additional funnel housed in a multi-stage differentially pumped region. Our initial experiments demonstrated that in addition to the brighter ion beam these dedicated modifications were crucial to gain a factor five boost in ion current. For ultrahigh sensitivity measurements from 200 pg to a few nanograms of peptide, we coupled an Evosep One system (Evosep Biosciences) to the timsTOF SCP instrument and used a ~28 min gradient Whiper 40SPD method that offers a constant flow of 100 nL/min. Evotips were loaded with K562 (Promega) peptides according to the vendor instructions. Data were acquired in a DIA mode with window placements as shown (Figure 1B). All data were processed using Spectronaut software version 14 with default settings applying a hybrid library.
A dilution series of peptide load was performed starting from 200 pg to 25.6 ng in replicates using the ultralow flow method—Whisper 40SPD— from Evosep Biosystems. This method delivers gradient at a flow rate of 100 nL/min further boosting the sensitivity of the platform. About 1200 protein groups could be quantified from the 200 pg loads, and that number increased to an excess of 4000 protein groups for 6.4 ng loads. Then 250 and 500 pg loads, mimicking the amount of peptides resulting from the digestion of one or two isolated cells, were used to test the accessible proteome depth. These samples were analyzed using the Whisper 40 samples per day (SPD) method applying dia-PASEF® methods with a 0.7 cycle time method that covers between 400 and 1000 m/z. The data were processed with a library consisting of 5200 protein groups and about 54,000 peptides. From 250 and 500 pg loads on average 1542 and 2146 protein groups were quantified, respectively.
Work done in the laboratories of Prof. Matthias Mann with the timsTOF SCP combined with robust low flow Evosep One when applied with efficient sample preparation yields exciting results on the biology of the cell cycle (3,4).
(1) Z.Y. Li, et al., Anal. Chem. 90(8), 5430–5438 (2018).
(2) F. Meier et al., Mol Cell Proteomics 17, 2534–2545 (2018).
(3) A-D Brunner et al., https://doi.org/10.1101/2020.12.22.423933
(4). A. Mund et al., https://doi.org/10.1101/2021.01.25.427969
Bruker Daltonics GmbH & Co. KG
Bremen · Germany
Tel. +49 (0)421-2205-0
Website: www.bruker.com
Testing Solutions for Metals and PFAS in Water
January 22nd 2025When it comes to water analysis, it can be challenging for labs to keep up with ever-changing testing regulations while also executing time-efficient, accurate, and risk-mitigating workflows. To ensure the safety of our water, there are a host of national and international regulators such as the US Environmental Protection Agency (EPA), World Health Organization (WHO), and the European Union (EU) that demand stringent testing methods for drinking water and wastewater. Those methods often call for fast implementation and lengthy processes, as well as high sensitivity and reliable instrumentation. This paper explains how your ICP-MS, ICP-OES, and LC-MS-MS workflows can be optimized for compliance with the latest requirements for water testing set by regulations like US EPA methods 200.8, 6010, 6020, and 537.1, along with ISO 17294-2. It will discuss the challenges faced by regulatory labs to meet requirements and present field-proven tips and tricks for simplified implementation and maximized uptime.
A Guide To Finding the Ideal Syringe and Needle
January 20th 2025Hamilton has produced a series of reference guides to assist science professionals in finding the best-suited products and configurations for their applications. The Syringe and Needle Reference Guide provides detailed information on Hamilton Company’s full portfolio of syringes and needles. Everything from cleaning and preventative maintenance to individual part numbers are available for review. It also includes selection charts to help you choose between syringe terminations like cemented needles and luer tips.
Oasis or Sand Dune? Isolation of Psychedelic Compounds
January 20th 2025Magic mushrooms, once taboo, have recently experienced a renaissance. This new awakening is partially due to new findings that indicate the effects of psilocybin, and its dephosphorylated cousin psilocin may produce long lasting results for patients who might be struggling with anxiety, depression, alcohol and drug abuse, and post-traumatic stress disorder. Hamilton Company has developed a methodology for the isolation and identification of 5 common psychedelic compounds used in the potential treatment of disease. The PRP-1 HPLC column resin remains stable in the harsh alkaline conditions ideal for better separations.
GPCRs – The Biological Traffic Modulator: Chromatographic Analysis of Peptides in the GI Tract
January 20th 2025The G protein-coupled receptors (GPCR) are found throughout the entire body and have shown significance in the development of new therapeutic treatments. Isolation of seven classic GRPC peptides initiating in the GI tract highlights the benefits of using the polymer-based PRP-3, a reversed-phase resin. The covalent bonds found in the PRP-3 exhibit advantageous interactions between the biological π bonds found in the peptides and the available aromatic benzyl rings of the resin.