Researchers from the Research Institute for Chromatography (Kortrijk, Belgium) and AstraZeneca R&D Charnwood (Loughborough, UK) used in-situ derivatization and liquid chromatography?mass spectrometry (LC?MS) to analyze arylamines and aminopyridines, which can be present as potentially genotoxic impurities in pharmaceutical preparations at trace levels.
Researchers from the Research Institute for Chromatography (Kortrijk, Belgium) and AstraZeneca R&D Charnwood (Loughborough, UK) used in-situ derivatization and liquid chromatography–mass spectrometry (LC–MS) to analyze arylamines and aminopyridines, which can be present as potentially genotoxic impurities in pharmaceutical preparations at trace levels. The method included a derivatization procedure using hexylchloroformate followed by reversed-phase LC with single-quadrupole MS in the selected ion monitoring mode. They found that the derivatized compounds exhibited better chromatographic behavior.
Advancing Bladder Cancer Research with Mass Spectrometry: A FeMS Interview with Marta Relvas-Santos
November 12th 2024LCGC International interviewed FeMS Empowerment Award winner Marta Relvas-Santos on her use of mass spectrometry to identify potential biomarkers and therapies for bladder cancer. She also shared insights on her work with FeMS and advice for fellow scientists.
Exploring The Chemical Subspace of RPLC: A Data-driven Approach
November 11th 2024Saer Samanipour from the Van ‘t Hoff Institute for Molecular Sciences (HIMS) at the University of Amsterdam spoke to LCGC International about the benefits of a data-driven reversed-phase liquid chromatography (RPLC) approach his team developed.