LC Column Technology: The State of the Art
November 1st 2017In this extended special feature to celebrate the 30th anniversary edition of LCGC Europe, leading figures from the separation science community explore contemporary trends in separation science and identify possible future developments. We asked key opinion leaders in the field to discuss the current state of the art in liquid chromatography column technology, gas chromatography, sample preparation, and liquid chromatography instruments. They also describe the latest practical developments in supercritical fluid chromatography, 3D printing, capillary electrophoresis, data handling, comprehensive two‑dimensional liquid chromatography, and multidimensional gas chromatography.
LC Instrumentation: The State of the Art
November 1st 2017In this extended special feature to celebrate the 30th anniversary edition of LCGC Europe, leading figures from the separation science community explore contemporary trends in separation science and identify possible future developments. We asked key opinion leaders in the field to discuss the current state of the art in liquid chromatography instruments.
Sample Preparation: The State of the Art
November 1st 2017In this extended special feature to celebrate the 30th anniversary edition of LCGC Europe, leading figures from the separation science community explore contemporary trends in separation science and identify possible future developments. We asked key opinion leaders in the field to discuss the current state of the art in sample preparation.
The Revival of Supercritical Fluid Chromatography in Pharmaceutical Analysis
November 1st 2017There has been a great renewal of interest in supercritical fluid chromatography (SFC) as a performing analytical tool for various types of applications recently. SFC is particularly suitable for pharmaceutical analysis, where it is required to have separation methods offering high throughput, elevated efficiency, and, importantly, sensitivity for the determination of drugs in various matrices, such as drug formulation and biological fluids. However, SFC has also been used for other applications, including food analysis, polymer analysis, and environmental analysis, as reported in a recent review.
Capillary Electrophoresis: The Past, Present, and Future
November 1st 2017Inspired by the work of Jorgenson and Lukacs, 30 years ago, the group of Richard Smith at Pacific Northwest National Laboratory in Washington (USA) reported the first online coupling of the microscale separation technique capillary electrophoresis (CE) to electrospray ionization (ESI) mass spectrometry (MS) using a sheath-liquid interface.
The Past, Present, and Future of Multidimensional Gas Chromatography
November 1st 2017The concept of (heart-cutting) multidimensional gas chromatography (MDGC) was introduced shortly after the invention of gas chromatography (GC). In that first experiment, the term “two-stage” was used to define the multidimensional process in applications involving the heart‑cutting of four hydrocarbon fractions, ranging from C5 to C8. The latter were separated first on a nonpolar packed column, and then on a polar one. A rather complex combination of valves enabled two-dimensional (2D) analysis. The great potential of the approach became immediately evident.
A New Era for Big Data and Chromatography
November 1st 2017We have entered a new stage in the era of accelerations. Moore’s law continues its expansion, increasing exponentially the computer power available. Other accelerations are remarkable, particularly easy access to cloud computing and the expansion and influence of artificial intelligence to practically all sectors of our society.
Managing Heterogeneity with Incremental Sampling Methodology
November 1st 2017Perhaps the largest source of error with sampling and sample preparation, especially with solid and semisolid samples, is the sample heterogeneity. Generally, sample heterogeneity is managed by sample homogenization, such as grinding and mixing, as well as use of an appropriately large sample size. Incremental sampling methodology (ISM) involves structured composite sampling and a processing method to create an unbiased estimate of the mean concentration of soil contaminants. Hence, ISM is emerging as a preferred methodology for conducting field environmental sampling. In this month’s instalment of “Sample Preparation Perspectives”, we describe the application of ISM to laboratory subsampling protocols.