Combining HIC, SEC, and IEX with Fluorescence Polarization for Drug Target Discovery
May 1st 2017Fluorescence polarization (FP) is a highly regarded technique for studying drug–protein interactions, but has limited value regarding protein mixtures. As a novel approach to drug target discovery, the possibility of combining FP with liquid chromatography (LC) was explored. Nondenaturing protein LC principles such as size-exclusion chromatography (SEC), hydrophobic interaction chromatography (HIC), and ion exchange chromatography (IEX) were found to be orthogonal and compatible with FP because the mobile phases used do not negatively affect detection. For simple protein mixtures, the SEC/HIC/IEX–FP approach was able to identify tankyrase as the target of a triazole-based inhibitor of the Wnt signaling pathway, which is heavily associated with colon cancer. However, the total peak capacity of the three LC dimensions was not sufficient to resolve at cell-proteome level, calling for higher resolution of intact proteins to enable stand-alone drug target discovery with LC and FP.
(U)HPLC: The Shape of Things To Come
May 1st 2017A recent argument was raised in the scientific press that in pursuit of greater speed and separation resolution, ultrahigh performance liquid chromatography (UHPLC) is faced with practical limitations and will struggle with its own version of Moore’s law.
The Role of LC–MS in Lipidomics
May 1st 2017Lipidomics, the analysis of lipids by mass spectrometric methods, revolutionized lipid science (1). It provides detailed quantitative information on hundreds of lipid species and opens new possibilities to gain an insight into lipid biology. This helps not only to explain the vital role of lipid species as membrane building blocks, but also to unravel their bioactive functions. Thus, lipid species can act as signaling molecules and modulate membrane properties, which are essential for organelle and membrane protein function. Moreover, the first examples demonstrated their potential as novel biomarkers to monitor human health.
Contemporary Trends in Biopharmaceutical Analysis
May 1st 2017The HPLC symposium series is recognized as “the forum” where new developments in liquid phase separations and their hyphenation to mass spectrometry (MS) for the analysis of (bio)pharmaceutical compounds and their metabolites are presented.
Advances in Glycomics in Biology and Medicine
May 1st 2017The importance of glycosylated structures in modern biology and medicine has been beyond dispute for many years, but there are still gaps in biochemical understanding. The current realization that virtually all major human diseases have been associated with glycosylation changes demands in-depth structural studies of these highly complex glycobiomolecules. Glycoscience with its many directions and a broad scope in both prokaryotic and eukaryotic systems is currently securing its place at the centre stage of modern biological research.
The Rising Profile of Comprehensive 2D LC
May 1st 2017Some members of the separation science community are still not yet convinced of the value of comprehensive two‑dimensional liquid chromatography (LC×LC). They feel that the large increase in separation power (that is, in peak capacity: the number of component peaks that may possibly be separated) may be compromised by losses in sensitivity and robustness of the separation. However, the chairmen of HPLC 2017 will have seen a great number of abstracts come their way from scientists who want to change this perception.
Affinity Capillary Electrophoresis— A Powerful Tool to Investigate Biomolecular Interactions
May 1st 2017In the biomedical research of molecular bases of both normal and pathological biological processes, it is currently necessary not only to detect, identify, and quantify individual compounds, but also to study their interactions with endo- and exogenous compounds. Obviously, for these purposes it is crucial to develop new advanced high‑performance analytical methods providing high sensitivity, high selectivity, and high throughput. These challenging requirements are well met by capillary electromigration (CE) methods. They have developed in the last three and half decades into high‑performance separation techniques suitable for the analysis of a wide spectrum of both low- and high‑molecular mass bioactive compounds.
Count the Cost, Part 3: Increasing Resolution by Changing Selectivity
May 1st 2017Several variables can be used to change selectivity in a liquid chromatography (LC) separation. Here we compare the variables in an effort to prioritize which experiments will be most effective.