A team of scientists has conducted an experiment using capillary-scale ion chromatography with suppressed conductivity detection to analyse gunshot residues, sweat and latent human fingerprints.
A team of scientists has conducted an experiment using capillary-scale ion chromatography with suppressed conductivity detection to analyse gunshot residues, sweat and latent human fingerprints.1
They tested particle-packed and polymer monolith capillary ion exchange resins for their chromatographic efficiencies, operating back pressures and thermal selectivities. The team separated a selection of inorganic and organic anions in under 23 minutes using an injection volume of 0.4 µL using a multistep hydroxide gradient. Linearity, range, reproducibility and sensitivity were tested to define method performance and then compared to a microbore (2 mm) IC method. Limits of mass sensitivity improved by factors up to 1800-fold using the capillary IC system and lay in the range of 0.3–26.2 pg. The final method was then applied to determine the presence of both endogenous and exogenous species in sweat and fingermark deposits.
The team were able to demonstrate that the method was sensitive enough to determine the difference between the sweat of three moderate (5–10 cigarettes a day) smokers in comparison to non-smokers. Smokers had elevated levels of thiocyanate and benzoate in their sweat compared with non-smokers. The team also conducted a controlled firing experiment to assess the transfer of gunshot residue onto the fingerprints of a firer. They were also able to show that direct contact with a black powder substitute (Pyrodex) could be identified by analysis of latent fingerprints.
The experiment is believed to be the first of its kind using capillary-scale suppressed ion chromatography to study sweat and fingerprints.
1. Leon Barron et al., Analyst, DOI: 10.1039/C2AN16126E (2012).
This story originally appeared in The Column. Click here to view that issue.
Measuring Vitamin K1 Concentrations in Dogs with Chronic Enteropathy Using LC–MS/MS
May 14th 2025A joint study between the University of Tennessee (Knoxville, Tennessee) and the University of Pennsylvania School of Veterinary Medicine (Philadelphia, Pennsylvania) compared directly measured vitamin K1 (vitK1) concentrations in healthy dogs and dogs with chronic enteropathy (CE) using liquid chromatography tandem mass spectrometry (LC–MS/MS); they also investigated whether supplementation of vitK1 in dogs with CE would significantly increase vitK1 concentrations.
HPLC 2025 Preview: Fundamentally Speaking (Part 2)
May 14th 2025Michael Lämmerhofer from the Institute of Pharmaceutical Sciences, University of Tübingen, Germany, spoke to JFK Huber Lecture Award winner of 2024 Torgny Fornstedt, professor in analytical chemistry and leader of the Fundamental Separation Science Group, Karlstad University, Sweden, about his pioneering work in high performance liquid chromatography (HPLC) with a focus on fundamentals, ion-pair chromatography, and oligonucleotide applications.