In a recent study published in the journal Agriculture, a group of scientists from Mexico developed a new method for detecting herbicides in agricultural soil, using techniques such as 9-fluorenylmethyl chloroformate (FMOC-Cl) and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) (1).
Millions of tons of pesticides are used across the world each year and can prove dangerous to human health when accumulating in the environment. Glyphosate is a popular herbicide that eliminates weeds in agriculture, forestry, and urban environments, with global consumption being 126 milion kg in 2014, with an expected sales increase of 6% by 2024 (1). Glyphosate is usually absorbed by cells via foliar content, but residual glyphosate can seep into soil, where microorganisms degrade it into a metabolite, aminomethylphosphonic acid (AMPA), which has a much longer half-life than glyphosate. These two substances, along with glufosinate, which is an herbicide used for broadcast burndown application prior to planting or emergence of canola, corn, soybean, and other plants, can lead to significant contamination in the environment, in places like groundwater, surface water, air, soil, dust, and food (2).
There are existing methods meant for determining these glyphosate, AMPA, and glufosinate residue, including liquid extraction (LE) followed by derivatization and subsequent quantification by HPLC-MS/MS; ultraviolet/visible (UV) detector; and diode array, amongst many others. The goal of this study was to validate a simple, efficient, and cost-effective method for the determination of these substances. Specifically, the scientists’ technique involves phosphate buffer extraction that involves derivatization with 9-fluorenylmethyl chloroformate (FMOC-Cl) and subsequent quantification by UHPLC-MS/MS. According to the scientists, their method differs from others due to “a simple derivatization, with a one-step extraction, for the determination at trace levels of glyphosate, AMPA, and glufosinate” (1). The scientists said this method would also help save resources in the reagents and consumables normally used in extraction, on top of having a shorter execution time.
After testing the method with the different types of residues, the results proved effective. The method exhibited a linear range of 5.0 to 600 µg/kg with limits of detection of 1.37, 0.69, and 1.22 µg/kg and limits of quantification of 4.11, 2.08, and 3.66 µg/kg for glyphosate, AMPA, and glufosinate, respectively. Furthermore, the method’s procedures showed promising repeatability and reproducibility, with coefficients of variations less than 8.0% and recovery percentages typically landing between 93.56% and 99.10%. Each analyte had their matrix effects calculated, with the results encouraging the scientists and their belief in their method. From there, the method was applied to 46 soil samples collected from Mexican crop fields, all of which held different concentrations of AMPA. According to the scientists, their efforts proved successful. Although further research is needed, this method could be applicable to other types of analytes and comparable matrices (such as sediments).
(1) Leyva-Morales, J. B.; Cabrera, R.; Bastidas-Bastidas, P. d. J.; Valenzuela-Quintanar, A. I.; Pérez-Camarillo, J. P.; González-Mendoza, V. M.; Perea-Domínguez, X. P.; Márquez-Pacheco, H.; Amillano-Cisneros, J. M.; Badilla-Medina, C. N.; Ontíveros-García, L. A.; Cruz-Acevedo, E. Validation and Application of Liquid Chromatography Coupled with Tandem Mass Spectrometry Method for the Analysis of Glyphosate, Aminomethylphosphonic Acid (AMPA), and Glufosinate in Soil. Agriculture 2023, 13, 1131. DOI: https://doi.org/10.3390/agriculture13061131
(2) Glufosinate Herbicide. Minnesota Department of Agriculture 2023. https://www.mda.state.mn.us/glufosinate-herbicide (accessed 2023-12-13)
LCGC’s Year in Review: Highlights in Liquid Chromatography
December 20th 2024This collection of technical articles, interviews, and news pieces delves into the latest innovations in LC methods, including advance in high performance liquid chromatography (HPLC), ultrahigh-pressure liquid chromatography (UHPLC), liquid chromatography–mass spectrometry (LC–MS), and multidimensional LC.
Using Chromatography to Study Microplastics in Food: An Interview with Jose Bernal
December 16th 2024LCGC International sat down with Jose Bernal to discuss his latest research in using pyrolysis gas chromatography–mass spectrometry (Py-GC–MS) and other chromatographic techniques in studying microplastics in food analysis.
Next Generation Peak Fitting for Separations
December 11th 2024Separation scientists frequently encounter critical pairs that are difficult to separate in a complex mixture. To save time and expensive solvents, an effective alternative to conventional screening protocols or mathematical peak width reduction is called iterative curve fitting.
Mobile Phase Buffers in Liquid Chromatography: A Review of Essential Ideas
December 11th 2024In this installment of "LC Troubleshooting," Dwight Stoll discusses several essential principles related to when and why buffers are important, as well as practical factors, such as commonly used buffering agents, that are recommended for use with different types of detectors.