A new publication introduces a groundbreaking automated system for high-throughput mass spectrometry analysis, reshaping the future of biotherapeutic characterization.
Scientists at The Janssen Pharmaceutical Companies of Johnson & Johnson have unveiled a groundbreaking fully automated system for high-throughput mass spectrometry analysis of biotherapeutics and published their work in the Journal of the American Society for Mass Spectrometry (1). Led by Hans E. Waldenmaier, the team developed an integrated, multi-instrument automated system that streamlines laboratory workflows and enhances efficiency in pharmaceutical research and development.
Data center cloud connection network router and switch | Image Credit: © Evgen3d - stock.adobe.com
The system incorporates liquid and microplate handling robotics, integrated LC–MS, and data analysis software. It seamlessly executes various methods involved in mass spectrometry characterization of biotherapeutics. The automated process begins with tip-based purification of target proteins from expression cell-line supernatants. Metadata is retrieved from the corporate data aggregation system, initiating the purification procedure.
After purification, the protein samples undergo preparation for mass spectrometry analysis, including deglycosylation and reduction steps for intact and reduced mass analysis, as well as proteolytic digestions, desalting, and buffer exchange via centrifugation for peptide map analysis. The prepared samples are then loaded into the LC–MS instrumentation for data acquisition.
Raw data are stored on a local area network (LAN) storage system and subsequently uploaded to cloud-based servers using watcher scripts. The raw MS data are processed with appropriate analysis workflows such as database searches for peptide mapping or charge deconvolution for undigested proteins. The curated results are integrated with sample metadata in the corporate data aggregation system.
This automated system revolutionizes mass spectrometry analysis of biotherapeutics, enhancing efficiency and productivity in pharmaceutical research. By combining robotics, integrated LC–MS, and cloud-based data processing, Janssen's researchers have accelerated the analytical workflow and enabled high-throughput analysis.
The impact of this advancement is profound. Rapid and accurate analysis of biotherapeutics will expedite the development of novel therapies, improve quality control of pharmaceutical products, and hasten the translation of research discoveries into clinical applications. The "lab of the future" has become a reality today, ushering in an era of automation and efficiency in mass spectrometry analysis.
This study pushes the boundaries of innovation with this pioneering automated system. By integrating robotics, LC–MS, and cloud-based data processing, new standards are being set for high-throughput mass spectrometry analysis in the pharmaceutical industry. This technology holds immense potential for enhancing research capabilities and advancing drug development, ultimately benefiting patient care.
(1) Waldenmaier, H. E.; Gorre, E.; Poltash, M. L.; Gunawardena, H. P.; Zhai, X. A.; Li, J.; Zhai, B.; Beil, E. J.; Terzo, J. C.; Lawler, R.; English, A. M.; Bern, M.; Mahan, A. D.; Carlson, E.; Nanda, H. “Lab of the Future”─Today: Fully Automated System for High-Throughput Mass Spectrometry Analysis of Biotherapeutics. J. Am. Soc. Mass Spectrom. 2023. DOI: https://doi.org/10.1021/jasms.3c00036
Rethinking Chromatography Workflows with AI and Machine Learning
April 1st 2025Interest in applying artificial intelligence (AI) and machine learning (ML) to chromatography is greater than ever. In this article, we discuss data-related barriers to accomplishing this goal and how rethinking chromatography data systems can overcome them.
Advances in Non-Targeted Analysis for PFAS in Environmental Matrices
March 27th 2025David Megson from Manchester Metropolitan University in Manchester, UK, spoke to LCGC International about the latest developments in non-targeted analysis (NTA) of per- and polyfluoroalkyl substances (PFAS) in environmental matrices based on a recent systematic review paper he has collaboratively published (1).
Study Explores Thin-Film Extraction of Biogenic Amines via HPLC-MS/MS
March 27th 2025Scientists from Tabriz University and the University of Tabriz explored cellulose acetate-UiO-66-COOH as an affordable coating sorbent for thin film extraction of biogenic amines from cheese and alcohol-free beverages using HPLC-MS/MS.
Quantifying Microplastics in Meconium Samples Using Pyrolysis–GC-MS
March 26th 2025Using pyrolysis-gas chromatography and mass spectrometry, scientists from Fudan University and the Putuo District Center for Disease Control and Prevention detected and quantified microplastics in newborn stool samples.