Scientists from the University of Utah in Salt Lake City, Utah, created a new technique to characterize lipids, specifically glycolipids, using ion mobility spectrometry–mass spectrometry (IMS-MS). Their work was published in Analytical Chemistry (1).
IMS-MS combines ion mobility spectrometry and mass spectrometry enabling the separation, identification, and quantification of ions in complex mixtures. In IMS, ions are separated based on their size and shape as they move through a drift tube in the presence of an electric field, while in the subsequent mass spectrometry step, ions are further separated based on their mass-to-charge (m/z) ratios. This powerful combination provides comprehensive information about the size, shape, and chemical composition of ions, making IMS-MS invaluable for various applications, including the analysis of metabolites in biological samples, including glycolipids, where it offers enhanced sensitivity, specificity, and structural insights.
Lipids are vital in many biological functions, but due to their many possible isomers, it is difficult to precisely characterize them through mass spectrometry-based methods. This is especially true for glycolipids, which have more isomeric heterogeneity compared to other lipid classes due to the introduction of a carbohydrate and its corresponding linkage position and α/β anomericity at the headgroup. Liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS), the technique utilized the most in lipidomics, cannot properly characterize all isomeric species. This necessitates creating different types of methodologies.
Ion mobility spectrometry–mass spectrometry (IMS-MS) has not been typically used for glycolipid analyses, but according to the authors, the technique “can provide an additional dimension of information that supplements LC–MS/MS workflows” (1). For this experiment, they enabled characterization of different glycolipid isomer sets using high-resolution cyclic ion mobility separations coupled with mass spectrometry (cIMS-MS), specifically using permethylation and metal adduction to fully resolve isomeric sphingolipids and ceramides.
From there, the group used a new metric that enablescomparing peak-to-peak resolution across varying cIMS-MS pathlengths. Through this process, the scientists found their methodologies amenable to LC–MS/MS-based workflows, all while having broad utility toward other omics-based analyses.
(1) Naylor, C. N.; Nagy, G. Permethylation and Metal Adduction: A Toolbox for the Improved Characterization of Glycolipids with Cyclic Ion Mobility Separations Coupled to Mass Spectrometry. Anal. Chem. 2023, 95 (36), 13725–13732. DOI: 10.1021/acs.analchem.3c03448
Inside the Laboratory: The Richardson Group at the University of South Carolina
November 20th 2024In this edition of “Inside the Laboratory,” Susan Richardson of the University of South Carolina discusses her laboratory’s work with using electron ionization and chemical ionization with gas chromatography–mass spectrometry (GC–MS) to detect DBPs in complex environmental matrices, and how her work advances environmental analysis.
Critical Role of Oligonucleotides in Drug Development Highlighted at EAS Session
November 19th 2024A Monday session at the Eastern Analytical Symposium, sponsored by the Chinese American Chromatography Association, explored key challenges and solutions for achieving more sensitive oligonucleotide analysis.
RAFA 2024 Highlights: Cutting-Edge Chromatography Techniques for Food Safety and Food Analysis
November 18th 2024An illuminating session focusing on progress in analytical techniques used in food analysis took place on Wednesday 6 November 2024 at RAFA 2024 in Prague, The Czech Republic, including a talk on the analysis of 1000 toxins in 10 minutes.
RAFA 2024 Highlights: Contemporary Food Contamination Analysis Using Chromatography
November 18th 2024A series of lectures focusing on emerging analytical techniques used to analyse food contamination took place on Wednesday 6 November 2024 at RAFA 2024 in Prague, Czech Republic. The session included new approaches for analysing per- and polyfluoroalkyl substances (PFAS), polychlorinated alkanes (PCAS), Mineral Oil Hydrocarbons (MOH), and short- and medium-chain chlorinated paraffins (SCCPs and MCCPs).