Researchers in the Department of Pharmaceutical Analysis at the National Institute of Pharmaceutical Education and Research (Punjab, India) have published new research using liquid chromatography?mass spectrometry (LC?MS) tools to characterize degradation products of the nonsteroidal anti-inflammatory drugs piroxicam and meloxicam.
Researchers in the Department of Pharmaceutical Analysis at the National Institute of Pharmaceutical Education and Research (Punjab, India) have published new research using liquid chromatography–mass spectrometry (LC–MS) tools to characterize degradation products of the nonsteroidal anti-inflammatory drugs piroxicam and meloxicam.
The degradation behaviour of the two drugs was studied by subjecting the drugs individually to hydrolytic (acidic, basic and neutral), oxidative, photolytic and thermal stress. Both drugs showed significant degradation in hydrolytic, oxidative and photoneutral conditions, although they were stable under dry heat and on exposure to light in the solid state. In total, five and four degradation products were formed from piroxicam and meloxicam, respectively. To characterize the degradation products, mass fragmentation pathways of both drugs were established using mass spectrometry–time of flight (MS-TOF), multiple-stage mass spectrometry (MSn), and hydrogen–deuterium (H/D) exchange mass studies, followed by LC–MS-TOF and on-line H/D exchange experiments on the degradation products.
The collected data helped to identify the degradation products of both the drugs. The researchers were able to establish degradation pathways and proposed mechanisms for the formation of the degradation products.
The study was published on-line on 18 October as an advance article in the journal Analytical Methods.
An LC–HRMS Method for Separation and Identification of Hemoglobin Variant Subunits
March 6th 2025Researchers from Stanford University’s School of Medicine and Stanford Health Care report the development of a liquid chromatography high-resolution mass spectrometry (LC–HRMS) method for identifying hemoglobin (Hb) variants. The method can effectively separate several pairs of normal and variant Hb subunits with mass shifts of less than 1 Da and accurately identify them in intact-protein and top-down analyses.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.