Ion mobility spectrometry can be a great tool for separating, identifying, and structurally characterizing analytes across many areas, but this process continues to have its challenges, according to a speaker at the High Performance Liquid Phase Separations and Related Techniques (HPLC 2023) conference held in Dusseldorf, Germany this week (1).
Valerie Gabelica, director of the Institut Européen de Chimie et Biologie, told the audience that collision cross-sections can help indicate gas phase compactness and different structures, but further work “needs to be done,” she said, as it relates to establishing standards for this process.
Gabelica began her talk by illustrating what the ion mobility approach actually looks like, describing a tube with buffer gas contained within, with an “entrance” and “exit” at both ends. “All the ions start at the entrance of the tube, and we measure how fast they move through the tube,” she said. “We can have a separation according to shape in the mobility cell, and we are also going to…take a collision cross-section to indicate how compact.” She noted that these measurements serve the dual purpose of separation and structural elucidation.
Ion mobility interpretation requires understanding rearrangements between the solution and gas phase, she continued. Citing a recently-published paper, Gabelica noted that the research team was curious about what was causing multimodal charge distributions from proteins that were being analyzed using electrospray. In that study, the team noted that a small percentage of the population didn’t follow the charged residue mechanism but also couldn’t ionize by pure chain ejection.
In that paper, the researchers, which included Gabelica, concluded that “a hybrid mechanism is possible, wherein globular domains are ejected one at a time from a parent droplet. The charge vs. solvent accessible surface area correlations of denatured and intrinsically disordered proteins are also compatible with this ‘bead ejection mechanism,’ which we propose as a general tenet of biomolecule electrospray" (2).
Gabelica wrapped up her talk by describing ion mass spectrometry as an “elucidation of unknown unknowns.”
(1) Gabelica, V. Ion mobility mass spectrometry to infer biopolymer folding and interactions. Presented at: HPLC 2023, June 18-22, 2023, Duesseldorf, Germany.
(2) Kristenko, N.; Rosu, F.; Largy, E.; Haustant, J.; Mesmin, C.; Gabelica, V. Native electrospray ionization of multidomain proteins via a bead ejections mechanism. J. Am. Chem. Soc. 2023, 145 (1), 498-506.
Next Generation Peak Fitting for Separations
December 11th 2024Separation scientists frequently encounter critical pairs that are difficult to separate in a complex mixture. To save time and expensive solvents, an effective alternative to conventional screening protocols or mathematical peak width reduction is called iterative curve fitting.
USP CEO Discusses Quality and Partnership in Pharma
December 11th 2024Ronald Piervincenzi, chief executive officer of the United States Pharmacoepia, focused on how collaboration and component quality can improve worldwide pharmaceutical production standards during a lecture at the Eastern Analytical Symposium (EAS) last month.