The effects of simulated digestion on the formation of α-dicarbonyl compounds (α-DCs) in chocolates were assessed in a recent study with high-performance liquid chromatography (HPLC).
A recent study, published in Food Research International, focused on evaluating the formation of α-dicarbonyl compounds (α-DCs) in chocolates under replicated digestive system conditions (1). The concentrations of glyoxal and methylglyoxal in chocolates before and after the process were concluded using through high-performance liquid chromatography (HPLC) analysis.
Generally, α-DCs are formed from carbohydrates via the heating and storage process, mainly through the Maillard reaction (MR; the nonenzymic browning reaction of reducing sugars with amines and typically involves amino acids, proteins, and peptides), caramelization, lipid-peroxidation, and enzymatic reaction (2-4). Among these toxic compounds are glyoxal (GO, an organic compound that has been considered as an effective alternative fixative to formaldehyde in immunostaining and super‐resolution microscopy [5]) and methylglyoxal (MGO, a by-product of glucose metabolism, known to be involved in microvascular dysfunction and is associated with reduced cognitive function [6]).
The production process of chocolate includes a variety of processes, such as fermentation, drying, roasting, conching (a process of heating and aerating chocolate to both introduce oxygen and to remove unwanted volatiles [7]), and tempering. Each of these processes play a critical part in the development of the resulting chocolate’s characteristic taste and smell. GO and MGO can be easily formed in chocolates due to high temperatures resulting from processing, pH, storage environments, high fat and sugar content, low moisture levels, and food processing techniques, including grinding, roasting, through MR, sugar autooxidation, lipid peroxidation, or caramelization.
The study revealed that initial concentrations for GO within the post-digested chocolate samples tested ranged from 0.0 and 228.2 µg/100 g, whereas initial concentrations for MGO concentrations ranged from 0.0 and 555.1. There was a notable increase in both GO and MGO levels following digestion, reaching up to 1804 % and 859 %, respectively. These findings indicate that digestive system conditions facilitate the formation of advanced glycation end product (AGE) precursors (modifications of proteins or lipids that become nonenzymatically glycated and oxidized after contact with aldose sugars [8]). Furthermore, GO and MGO levels were found to be low in chocolate samples containing dark chocolate. Conversely, they were found to be high in samples containing hazelnuts, almonds, pistachio, and milk.
The authors said that supplementary analysis should be performed that focuses on α-DCs formation under actual digestive system conditions to uncover the effects of gut microbiota to the process.
References
1. Elif Ede-Cintesun, R.; Jale Çatak, J.; Esra Ateş, E.; Mustafa Yaman, M. Glyoxal and Methylglyoxal Formation in Chocolate and their Bioaccessibility. Food Res. Int. 2024, 114552. DOI: 10.1016/j.foodres.2024.114552
2. Zheng, J., Ou, J., Ou, S. “Alpha-Dicarbonyl Compounds.” in Chemical Hazards in Thermally-Processed Foods, Wang, S. Editor. Springer, 2019. DOI:10.1007/978-981-13-8118-8_2
3. Yan, S.; Wu, L.; Xue, X. α-Dicarbonyl Compounds in Food Products: Comprehensively Understanding Their Occurrence, Analysis, and Control. Compr. Rev. Food Sci. Food Saf.2023. DOI: 10.1111/1541-4337.13115
4. https://sciencedirect.com/topics/agricultural-and-biological-sciences/maillard-reaction (accessed 2024-05-28)
5. Richter, K.N.; Revelo, N. H.;Seitz, K. J.; Helm, M. S.; Sarkar, D.; Saleeb, R. S et al. Glyoxal as an Alternative Fixative to Formaldehyde in Immunostaining and Super-Resolution Microscopy. EMBO J. 2018, 37(1),139-159. DOI: 10.15252/embj.2016957096.
6. Berends, E.; van Oostenbrugge, R. J.; Foulquier, S. et al. Methylglyoxal, a Highly Reactive Dicarbonyl Compound, as a Threat for Blood Brain Barrier integrity. Fluids Barriers CNS 2023, 20, 75 (2023). https://doi.org/10.1186/s12987-023-00477-6
7. Conching and Refining. Chocolate Alchemy website. https://chocolatealchemy.com/conching-and-refining (accessed 2024-05-28)
8. Goldin, A.; Beckman, J. A.; Schmidt, A. M.; Creager. M. A. Advanced Glycation End Products Sparking the Development of Diabetic Vascular Injury. Circulation 2006,114, 597–605. DOI: 10.1161/CIRCULATIONAHA.106.621854
Chocolate pieces on a white background. © Anatoly Repin - stock.adobe.com
Determining Neurotransmitters in Spinal Cords with UHPLC
February 18th 2025Researchers at Jilin University (Changchun, China) developed a highly sensitive, rapid, and accurate method for analyzing neurotransmitters (NTs) in rat spinal cord tissue. Ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS) in conjunction with ultra-ionic liquid dispersive liquid-liquid microextraction (UA-MIL-DLLME) were used to extract NTs for analysis.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
Revolutionizing LC-MS with Next-Gen Separation for Cyclic Peptide Analysis
February 17th 2025Cyclic peptides, known for their stability and high specificity, are promising therapeutic agents in the fight against cancer, infections, and autoimmune diseases. However, developing effective cyclic peptides presents numerous challenges, including poor pharmacokinetics, efficacy, and toxicity. Traditional methods like liquid chromatography tandem-mass spectrometry (LC-MS/MS) often struggle with resolving isomeric linear peptide metabolites, posing significant risks in safety, efficacy, and regulatory approval. In this paper, Komal Kedia, PhD, will share how she leveraged MOBIE’s high-resolution ion mobility-mass spectrometry (IM-MS) system to achieve a 72% reduction in run times, 200% greater resolving power, and enhanced accuracy in identifying “soft spots” prone to enzymatic degradation.