High efficiency columns increase resolution by reducing peak widths. This enables easier peak integration and identification, as the peaks of interest are better separated from each other and from potential background or excipient peaks. There are several ways for an analyst to improve separation efficiency; one being to use columns packed with smaller particle size stationary phases. Another way is to use longer columns. However, a drawback in the use of both options is that they can be limited by the system operating pressure. Another path forward is the use of solid-core or superficially porous particles (SPP), which have been proven to improve efficiency without sacrificing operating pressure. This app note shows incremental steps on how to improve separation efficiency for a mixture of three analytes.
Infographic: Be confidently audit ready, at any time and reduce failures in pharma QC testing
November 20th 2024Discover how you can simplify the audit preparation process with data integrity dashboards that provide transparency to key actions, and seamlessly track long-term trends and patterns, helping to prevent system suitability failures before they occur with waters_connect Data Intelligence software.