A recent study out of the Tabriz University of Medical Science in Tabriz, Iran and the University of Birjand in South Khorasan, Iran tested a new system for detecting and extracting favipiravir from plasma samples. Their findings were published in the Journal of Pharmaceutical and Biomedical Analysis (1).
Favipiravir, which is sold under the brand name Avigan, is an antiviral drug that is used to treat influenza. The medication is also being investigated as a treatment for COVID-19. Favipiravir inhibits viral replication by arresting RNA polymerase. The pharmacokinetic complexities of the drug and its results need further study for scientists to properly understand the correct dosages for patients. This has led to the determination of biological samples, like urine and plasma, being used to prescribe the correct dosage of favipiravir.
Various methods have been used to determine different analytes in real samples, such as high-performance liquid chromatography (HPLC) equipped with tandem mass spectrometry (MS/MS) detector (HPLC-MS/MS), HPLC-ultraviolet detector, and electrochemical sensors. However, these methods cannot be used directly for drug analysis, since the sample matrix is complex and low concentrations of drugs are used. As such, a suitable sample preparation method is needed to remove impurities and disturbing factors, in addition to aiding with analyte preconcentration. Ideal extraction methods should be fast, simple, repeatable, and inexpensive, and they should use low volumes of less toxic organic solvents. For this study, the scientists decided to focus on dispersive solid phase extraction (DSPE), which is based on dispersing a solid sorbent into a liquid sample to extract and clean-up different analytes from complex matrices.
Read More: CRISPR-Powered Microfluidics Devices for Detecting SARS-CoV-2 and HIV
The scientists decided to focus on using yolk-shell nanostructures, which are advanced core-shell structures with an empty space between their core and their shell. These nanostructures are notable for their tunable physical and chemical properties, as well as their structural configuration. For the experiment, the scientists prepared a mesoporous silica yolk-shell adsorbent in the dispersive solid phase extraction (DSPE) of the analyte from plasma. This was used for sample preparation before HPLC-MS/MS analysis, before being optimized, validated, and then being used to extract favipiravir from plasma samples.
The synthesized sorbent presented a high adsorption capacity for favipiravir, which can be credited to its mesoporous structure and different interactions. Once effective paraments, such as the amount of sorbent and pH that were used and the adsorption and desorption times, were established, the method’s analytical parameters were evaluated. The method showed a wide linear range from 0.50 to 1000 µg/L, with the detection and quantification limits being 0.15 and 0.50 µg/L, respectively. The method’s relative standard deviation was obtained using intra- and inter-day tests, with both results being less than 6.0%. Finally, the method successfully measured for favipiravir in plasma with relative recoveries in the range of 87–105%. These findings may hint at the future of favipiravir in fighting COVID-19 and other diseases. However, further research is needed before this can be fully confirmed and applied in practical ways.
(1) Nosratzehin, F.; Mofathenia, P.; Gharagozlou, M. et al. Extraction of Covid-19 Drug (Favipiravir) from Plasma Samples by Yolk-Shell Mesoporous Silica Before HPLC-MS/MS Determination. J. Pharm. Biomed. Anal. 2024, 239, 115874. DOI: https://doi.org/10.1016/j.jpba.2023.115874
Inside the Laboratory: The Richardson Group at the University of South Carolina
November 20th 2024In this edition of “Inside the Laboratory,” Susan Richardson of the University of South Carolina discusses her laboratory’s work with using electron ionization and chemical ionization with gas chromatography–mass spectrometry (GC–MS) to detect DBPs in complex environmental matrices, and how her work advances environmental analysis.
Critical Role of Oligonucleotides in Drug Development Highlighted at EAS Session
November 19th 2024A Monday session at the Eastern Analytical Symposium, sponsored by the Chinese American Chromatography Association, explored key challenges and solutions for achieving more sensitive oligonucleotide analysis.
RAFA 2024 Highlights: Cutting-Edge Chromatography Techniques for Food Safety and Food Analysis
November 18th 2024An illuminating session focusing on progress in analytical techniques used in food analysis took place on Wednesday 6 November 2024 at RAFA 2024 in Prague, The Czech Republic, including a talk on the analysis of 1000 toxins in 10 minutes.
RAFA 2024 Highlights: Contemporary Food Contamination Analysis Using Chromatography
November 18th 2024A series of lectures focusing on emerging analytical techniques used to analyse food contamination took place on Wednesday 6 November 2024 at RAFA 2024 in Prague, Czech Republic. The session included new approaches for analysing per- and polyfluoroalkyl substances (PFAS), polychlorinated alkanes (PCAS), Mineral Oil Hydrocarbons (MOH), and short- and medium-chain chlorinated paraffins (SCCPs and MCCPs).