This is the third article in a series exploring current topics in separation science that will be addressed at the HPLC 2017 conference in Prague, Czech Republic, from 18–22 June.
This is the third article in a series exploring current topics in separation science that will be addressed at the HPLC 2017 conference in Prague, Czech Republic, from 18–22 June.
A recent argument was raised in the scientific press that in pursuit of greater speed and separation resolution, ultra(high) performance liquid chromatography (U[HPLC]) is faced with practical limitations and will struggle with its own version of Moore’s law (1).
This empirical law was first proposed to describe the long-term progress made in the micro-electronics industry. Moore’s law states that speed and memory storage capacity are roughly doubling every two years. Progress is occurring by shrinking the distance between the transistors on the chips to cram even more of them on the same surface. However, the current spacing between the transistors is already down to a dazzling small 22 nm, and most theoretical models predict that the fundamental laws of physics will prevent the distance being reduced below 10–7 nm. It is clear that Moore’s law will one day run into a hard stop and bring a halt to the advances in speed and data storage if the electronics industry does not find a new paradigm to store and manipulate data
A gloomy parallel was drawn with (U)HPLC to emphasize that this field has been witnessing a Moore’s law-type of progress in speed and resolution over the past decade. This progress was essentially realized by making increasingly smaller particles, and it was suggested that (U)HPLC is also facing the end of practical progress with its own version of Moore’s law.
Most specialists agree that with pressure limits entering a range where the compressibility of the liquid makes it harder to precisely control the flow rate and where viscous heating threatens to become unacceptably high, we have now reached the stage of what can practically be achieved by particle size reduction.
Slip flow technology has been suggested as a possible way out of this, but its promises still need to be achieved in practice (2). Sub-micron particles may also be able to realize the ultra-rapid separations (in the order of a few seconds) needed in the final dimension of the best possible three-dimensional LC (3D-LC separations, but this is likely to remain a very niche application for a long time.
However, the limits of Moore’s law in (U)HPLC only relate to packed beds of spherical particles. We should not forget the sphere is only one of the many shapes that are possible. Just think of monoliths, perfusion particles, and pillar arrays. Measured by Golay’s and Knox’s separation impedance number, these are far better shapes than the packed bed of spheres and hold the promise of a 10-fold increase in efficiency (for the same time) and even a 100-fold reduction of the analysis time (for the same efficiency). These approaches have not delivered their promise yet, some because of the lack of order and some because the size of the individual elements is still too large to reach their performance limit in a range of practical times or efficiencies-and some still suffer from both problems.
However, with new materials engineering possibilities, such as silicon micromachining and 3D printing, rapidly gaining widespread availability, it is highly possible we will one day see a commercially viable production technology that will be able to produce the perfect chromatographic column, breaking away from Moore’s law by trading our spherical particles for supports with a much more advantageous shape as measured by Golay’s and Knox’s separation impedance.
Let us not forget how this field recently defeated Moore’s law already, with the (re-)introduction of core–shell particles (representing a fundamental change of the particle design) leading to a large gain in speed and resolution. So, let us be optimistic and consider that maybe the next 50 years will be the era of support shape, rather than of support size. And with exciting contributions on the possibilities of silicon mircomachining and 3D printing on the programme, the HPLC 2017 conference could be the start of this new era.
The 45th International Symposium on High Performance Liquid Phase Separations and Related Techniques (HPLC 2017) will be held in Prague, Czech Republic, from 18–22 June 2017. Website: www.hplc2017-prague.orgReferences
(1) M.S. Reisch, C&E News94(24), 35–36 (2016).
(2) B.A. Rogers, Z. Wu, B. Wei, X. Zhang, X. Cao, O. Alabi, and M.J. Wirth, Anal. Chem.87, 2520−2526 (2015).
2024 EAS Awardees Showcase Innovative Research in Analytical Science
November 20th 2024Scientists from the Massachusetts Institute of Technology, the University of Washington, and other leading institutions took the stage at the Eastern Analytical Symposium to accept awards and share insights into their research.
Inside the Laboratory: The Richardson Group at the University of South Carolina
November 20th 2024In this edition of “Inside the Laboratory,” Susan Richardson of the University of South Carolina discusses her laboratory’s work with using electron ionization and chemical ionization with gas chromatography–mass spectrometry (GC–MS) to detect DBPs in complex environmental matrices, and how her work advances environmental analysis.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Infographic: Be confidently audit ready, at any time and reduce failures in pharma QC testing
November 20th 2024Discover how you can simplify the audit preparation process with data integrity dashboards that provide transparency to key actions, and seamlessly track long-term trends and patterns, helping to prevent system suitability failures before they occur with waters_connect Data Intelligence software.
Critical Role of Oligonucleotides in Drug Development Highlighted at EAS Session
November 19th 2024A Monday session at the Eastern Analytical Symposium, sponsored by the Chinese American Chromatography Association, explored key challenges and solutions for achieving more sensitive oligonucleotide analysis.