Tumors can harm the human metabolic system in several ways. To better understand how this can be prevented, a group of scientists from Hangzhou Normal University in China, whose work was published in the Journal of Chromatography A, investigated a new means of measuring aberrant metabolites (1).
Tumor cells rely on metabolic reprogramming, which involves several processes such as fatty acids syntheses and glutaminlysis, to reduce stress necessary for survival. This has led into extensive research into metabolic reprogramming and the creation of various treatments. Common techniques, such as liquid chromatography-mass spectrometry (LC–MS) and gas chromatography-mass spectrometry (GC–MS), have been ineffective in this process due to strong polarities, isomerism, or low ionization efficiencies during MS detection. However, chemical derivatization of metabolites may prove to be a more effective method for metabolic reprogramming.
Epoxydocosapentaenoic acids (EDPs) derived from omega-3 fatty acids can slow down blood vessel creation and endothelial cells’ movements, while phosphoglycerate dehydrogenase (PHGDH) was discovered to impede the production of nucleotides from glycolytic serine, a critical source of single carbons in breast cancer. These metabolic vulnerabilities can pave the way for more effective means of combatting tumor cells by helping identify them quicker.
Chemical derivatization is a promising field, and there seems to be more room to grow with how these techniques can be used. In the future, these methods may be able to impact how medical professionals can detect and combat tumor growth can change and grow to be more effective than previously thought.
(1) Advancements in Analyzing Tumor Metabolites through Chemical Derivatization-Based Chromatography. J. Chromatogr. A. 2023, 1706, 464236. DOI: https://doi.org/10.1016/j.chroma.2023.464236
LCGC’s Year in Review: Highlights in Liquid Chromatography
December 20th 2024This collection of technical articles, interviews, and news pieces delves into the latest innovations in LC methods, including advance in high performance liquid chromatography (HPLC), ultrahigh-pressure liquid chromatography (UHPLC), liquid chromatography–mass spectrometry (LC–MS), and multidimensional LC.
Analysis of Pesticides in Foods Using GC–MS/MS: An Interview with José Fernando Huertas-Pérez
December 16th 2024In this LCGC International interview with José Fernando Huertas-Pérez who is a specialist in chemical contaminants analytics and mitigation at the Nestlé Institute for Food Safety and Analytical Sciences at Nestlé Research in Switzerland, In this interview we discuss his recent research work published in Food Chemistry on the subject of a method for quantifying multi-residue pesticides in food matrices using gas chromatography–tandem mass spectrometry (GC–MS/MS) (1).
Using Chromatography to Study Microplastics in Food: An Interview with Jose Bernal
December 16th 2024LCGC International sat down with Jose Bernal to discuss his latest research in using pyrolysis gas chromatography–mass spectrometry (Py-GC–MS) and other chromatographic techniques in studying microplastics in food analysis.