Space: The final frontier. Although, this is a frontier that is becoming ever more accessible, but what does it take to survive in space and how can chromatography help to keep astronauts safe?
Space: The final frontier. Although, this is a frontier that is becoming ever more accessible, but what does it take to survive in space and how can chromatography help to keep astronauts safe?
The first component of the International Space Station (ISS) was launched in 1998, and heralded a new era in space travel and international collaboration. The ISS is in a low earth orbit (~266 miles) travelling at speeds of 17,100 mph (7.66 km/s), allowing it to orbit the Earth in ~90 minutes; this means that the astronauts who are resident on ISS see 15 sunrises and sunsets every day.1 ISS is primarily a laboratory with its resident astronauts carrying out experiments in a wide variety of fields including, biology, physics, astronomy, physiology etc. 2 However, the astronauts and ISS are also an experiment in themselves. Prior to the launch of ISS the longest continuous stay in orbit by a U.S. crew was 84 days on Skylab, ISS is continuously manned with astronauts completing missions which are a minimum of 6 months in duration.3-4 The health and safety of the crew aboard ISS is of primary importance. The ISS is a closed system which must be constantly monitored for signs of contamination which can result from off-gassing of vapors from items within ISS (plastics, tape etc.) as well as microbial (bacteria and fungi) contamination which can be inadvertently introduced into the ISS environment by crew and supplies. National Aeronautics and Space Administration (NASA) has set spacecraft maximum allowable concentrations (SMACs) for many contaminants, for 1 hour (emergency), 180 days, and 1000 days.5-7 Air, water, and surface samples are routinely tested for contamination, if there are significant increases above base levels for selected compounds the ISS crew can change air filters, clean surfaces, and treat the water in order to prevent illness.
The complete article is available to CHROMacademy Lite and Premier members here >>
CHROMacademy Lite Membership is FREE and it only takes two minutes to register.
With a Lite Membership you are given access to:
∙ This month's webcast & tutorial
∙ Selected eLearning modules
∙ Featured CHROMacademy Content
∙ The CHROMacademy forum
Test drive CHROMacademy and Check out more great content available FREE to our Lite members »
References
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Frontage Laboratories Streamlines their Product Lifecycle Management with NuGenesis™ LMS
January 9th 2025Frontage laboratories wanted to improve the efficiency and quality of their operations and invest in ways to streamline their workflows. They implemented Waters NuGenesis™ Lab Management System (LMS) to progress their digital transformation journey and combine synergistic data, workflow, and sample management capabilities to support the entire product lifecycle from discovery through manufacturing.
The Intricacies of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.