During Analytica 2024 in Munich, Germany, Michael Lämmerhofer of the University of Tuebingen discusses the potential of chiral stationary phases (CSPs) in different applications.
Michael Lämmerhofer is a full professor (W3) for pharmaceutical (bio-)analysis at the University of Tübingen, Germany. H earned his PhD in Pharmaceutical Chemistry at the University of Graz, Austria. He was coworker of Professor W. Lindner (University of Vienna, Austria) until 2011 and from 1999 to 2000 he was post-doc at the Department of Chemistry of the University of California, Berkeley, USA, with Prof Frantisek Svec.
His research interests include the development of functionalized separation materials (chiral stationary phases, mixed‑mode phases, chemo- and bioaffinity materials, nanoparticles, monoliths), metabolomics and lipidomics, pharmaceutical analysis (impurity profiling, enantioselective analytics), multidimensional separations, and biopharmaceuticals analysis.
In this interview segment, Lämmerhofer discusses the following questions:
To learn more about Analytica 2024, you can watch more of our team's videos from the festival, where we interview people like Elia Psillakis of Technical University of Crete and Anne Bendt of the Singapore Lipidomics Incubator (SLING).
Next Generation Peak Fitting for Separations
December 11th 2024Separation scientists frequently encounter critical pairs that are difficult to separate in a complex mixture. To save time and expensive solvents, an effective alternative to conventional screening protocols or mathematical peak width reduction is called iterative curve fitting.
USP CEO Discusses Quality and Partnership in Pharma
December 11th 2024Ronald Piervincenzi, chief executive officer of the United States Pharmacoepia, focused on how collaboration and component quality can improve worldwide pharmaceutical production standards during a lecture at the Eastern Analytical Symposium (EAS) last month.
Investigating the Influence of Packaging on the Volatile Profile of Oats
December 10th 2024In the testing of six different oat brands, headspace sorptive extraction and comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC–TOF-MS) reveal how various packaging types can affect and alter the oats’ volatile profile, underscoring the potential impact of packaging on food quality.