Researchers in Tianjin, China, have employed all ion unfolding–ion mobility–mass spectrometry (AIU–IM–MS) to enhance the differentiation of therapeutic polyclonal antibodies, offering insights into improvements in conformational stability and advantages in cost-effectiveness.
In a recent study published in the Journal of the American Society for Mass Spectrometry, a team of four researchers in Tianjin, China—Rui Zhao and Ning Liu of Nankai University, Gongyu Li of Nankai University and the Haihe Laboratory of Sustainable Chemical Transformations, and Zhen Zheng of Tianjin Medical University—introduced an innovative approach to assess the conformational stability of therapeutic polyclonal antibodies (pAbs) with enhanced precision and efficiency (1). The method, known as all ion unfolding–ion mobility–mass spectrometry (AIU–IM–MS), represents an advancement in the characterization of pAbs, addressing their unique advantages over monoclonal antibodies and paving the way for their broader clinical applications.
Antibody (Ab), also known as an immunoglobulin (Ig). 3d vector. | Image Credit: © sakurra - stock.adobe.com
Polyclonal antibodies offer distinct advantages in terms of cost, production time, and affinity when compared to monoclonal antibodies. To harness the full potential of pAbs in clinical settings, it is crucial to comprehensively understand their conformational stability at a molecular weight-resolved scale. However, traditional analytical techniques have struggled to provide simultaneous information on both stability and molecular weight with sufficient accuracy.
Ion mobility–mass spectrometry (IM–MS) has emerged as a promising approach to rapidly assess the conformational stability of proteins while maintaining accurate molecular weight information. This technique is particularly effective when combined with collision-induced unfolding (CIU), which allows researchers to capture dynamic conformational intermediates, supplementing traditional structural measurements based on collisional cross-section. However, most CIU–IM–MS methods focus on analyzing isolated, specific protein ions, limiting their analytical throughput and speed.
In this study, the researchers introduced the AIU–IM–MS approach, which enables the simultaneous analysis of multiple ions during stepped unfolding processes. This novel technique offers several noteworthy benefits for the analysis of pAbs. Firstly, AIU provides a quantitative characterization of subtle differences in conformational stability among four structurally similar pAbs, significantly improving the ability to differentiate between stability and structural parameters by two- to fourfold. This enhanced resolving capability is instrumental in understanding the unique characteristics of pAbs.
Moreover, AIU offers substantial time savings and improved spectrum quality, featuring an elevated signal-to-noise ratio. This is a critical advantage, as it accelerates the analytical process while maintaining the precision required for studying pAbs. With AIU–IM–MS, researchers can efficiently assess the conformational stability of therapeutic pAbs, unlocking new possibilities for their application in various medical scenarios.
The researchers have not only introduced a novel analytical technique but have also demonstrated its effectiveness by focusing on the conformational stability of pAbs. By allowing the simultaneous analysis of multiple ions during unfolding processes, AIU–IM–MS significantly enhances the differentiation of stability and structural parameters. This development has the potential to reshape the landscape of therapeutic pAb research and its clinical applications, making it noteworthy in the field of mass spectrometry and antibody characterization in general.
This article was written with the help of artificial intelligence and has been edited to ensure accuracy and clarity. You can read more about our policy for using AI here.
(1) Zhao, R.; Liu, N.; Zheng, Z.; Li, G. Enhanced Stability Differentiation of Therapeutic Polyclonal Antibodies with All Ion Unfolding–Ion Mobility–Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2023, 34 (10), 2289–2295. DOI: https://doi.org/10.1021/jasms.3c00215
Silvia Radenkovic on Her Research and Passion for Scientific Collaboration
April 3rd 2025Radenkovic is a PhD candidate at KU Leuven and a member of FeMS. Her research focuses on inborn metabolic disorders (IMD), like congenital disorders of glycosylation (CDG), omics techniques such as tracer metabolomics, and different disease models.
Study Explores Thin-Film Extraction of Biogenic Amines via HPLC-MS/MS
March 27th 2025Scientists from Tabriz University and the University of Tabriz explored cellulose acetate-UiO-66-COOH as an affordable coating sorbent for thin film extraction of biogenic amines from cheese and alcohol-free beverages using HPLC-MS/MS.
Quantifying Microplastics in Meconium Samples Using Pyrolysis–GC-MS
March 26th 2025Using pyrolysis-gas chromatography and mass spectrometry, scientists from Fudan University and the Putuo District Center for Disease Control and Prevention detected and quantified microplastics in newborn stool samples.
Multi-Step Preparative LC–MS Workflow for Peptide Purification
March 21st 2025This article introduces a multi-step preparative purification workflow for synthetic peptides using liquid chromatography–mass spectrometry (LC–MS). The process involves optimizing separation conditions, scaling-up, fractionating, and confirming purity and recovery, using a single LC–MS system. High purity and recovery rates for synthetic peptides such as parathormone (PTH) are achieved. The method allows efficient purification and accurate confirmation of peptide synthesis and is suitable for handling complex preparative purification tasks.