Beat the Heat: Cold Injections in Gas Chromatography
July 1st 2020In gas chromatography, heating the sample in the inlet can lead to sample losses and loss of quantitative reproducibility, but these problems can be avoided using cold sample introduction. This article describes various types of cold injection and how they can benefit the analyst.
Practical Two-Dimensional Liquid Chromatography in Drug Metabolism Studies and Bioanalysis
June 30th 2020Filip Cuyckens from Janssen R&D in Belgium spoke to LCGC Europe about recent innovative approaches he and his team developed to support drug metabolism and pharmacokinetic studies, and the inventive role that two-dimensional liquid chromatography (2D-LC) plays in his laboratory to boost sensitivity, solve recovery issues, and increase overall efficiency.
A Simple LC–MS Multi-Analyte Method to Determine Food Additives and Caffeine in Beverages
June 30th 2020A simple LC–MS method has been developed and validated for the simultaneous determination of 18 synthetic food additives and caffeine in soft and energy drinks, and in various alcoholic beverages. Nine food colours (tartrazine, sunset yellow FCF, azorubine, ponceau 4R, allura red AC, patent blue V, brilliant blue FCF, green S, brilliant black BN), two preservatives (sorbic and benzoic acid) and seven sweeteners (acesulfame K, aspartame, cyclamic acid, saccharin, sucralose, neohesperidin DC, neotame) were targeted food additives. The method employs reversed-phase ultra-high performance liquid chromatography (UHPLC) for analyte separation and a single quadrupole mass spectrometer for their detection. The limits of quantification were low enough to enable a reliable control of maximum limits set for some additives (Regulation [EC] No. 1333/2008). The method was applied for analysis of a wide range of samples collected at a typical supermarket: 14 soft drinks, 19 energy drinks, and 43 alcoholic beverages.
Recovering from a COVID-19 Shutdown: Tips and Tricks for Starting Up, Part 2
June 30th 2020COVID-19-related laboratory shutdowns are sure to cause a myriad of problems with liquid chromatography (LC) instrumentation across the globe. Taking a systematic approach to restarting these systems will save money and time in the long run by preventing problems that may otherwise appear in days or weeks following startup.