Robert Shellie has been a member of ACROSS at University of Tasmania since 2005. He leads a research group that focuses on development and application of hyphenated techniques in chromatography to solve complex separation problems. Paul Harvey and Samuel Poynter are PhD candidates at University of Tasmania.
The principal aim of this work was to provide a perspective with practical utility in streamlining the chromatographic method development in pharmaceutical industries based upon predicting the chromatographic retention times from molecular structures. Workflows were suggested with a focus on reversed-phase LC, IC, and HILIC as the three major techniques. Unlike HILIC, retention prediction in both reversed-phase LC and IC can benefit from the maturity of these techniques and the transparency of their retention mechanisms. In reversed-phase LC the solute coefficients in the hydrophobic subtraction model and in IC the a and b values in the linear solvent strength model can be the subject of modelling with their subsequent use in retention prediction. A workflow for HILIC can be based on the design of experiments approach, to account for all major contributors to the retention mechanism, and direct correlation of experimental retention times to the molecular descriptors.
The Modulator in Comprehensive Two-Dimensional Liquid Chromatography
May 20th 2016The interface between the two separation dimensions is a key element of any comprehensive two‑dimensional liquid chromatography (LC×LC) system. LC×LC has typically been implemented by using one or more switching valves, equipped with either sampling loops or trap column(s). Temperature manipulation is a relatively unexplored yet promising route towards non-valve-based LC×LC. The fairly recent emergence of thermal modulation has provided a less conventional method for performing LC×LC separations. This article illustrates the variety of commonly used modulators, paying specific attention to focusing modulators.
Comprehensive 2D GC–QPMS with Differential Flow Modulation
November 1st 2008Differential flow modulation is an inexpensive way to perform GCÃ-GC separations which has been attracting growing attention recently. Differential flow modulation uses high carrier gas flow rates in the second dimension column so it is widely thought that this rules out direct coupling with mass spectrometry. However direct coupled GCÃ-GC-QPMS using differential flow modulation is reported here for the first time using an unmodified mass spectrometer comprising a dual inlet turbomolecular pump and fast scanning quadrupole mass analyser. The suitability of the approach for characterization of essential oils is demonstrated.