The Role of LC–MS/MS to Assess Chemical Exposure

Article

Over 90% of human diseases are not solely caused by genetic influences, but by a combination of genetic factors and non-genetic environmental influences. While genetic factors can be easily assessed using rapid genome sequencing technologies, measuring environmental factors presents a greater challenge. Currently, the analysis of environmental factors relies on either direct or indirect measurements of exposure.

Cells under human DNA system illustration | Image Credit: © BillionPhotos.com - stock.adobe.com

Cells under human DNA system illustration | Image Credit: © BillionPhotos.com - stock.adobe.com

Direct measurements involve analyzing specific foreign substances (xenobiotics) in environmental samples, biofluids, and tissues. However, many xenobiotics are often eliminated from the body before any responses occur. Indirect analyses, on the other hand, examine changes in biological processes resulting from chemical exposure. These analyses use various complementary techniques such as transcriptomics, proteomics, metabolomics, or lipidomics to gain insight into molecular responses.

Erin Baker from the Department of Chemistry, University of North Carolina, Chapel Hill, USA,presented a keynote lecture called “Utilizing Multidimensional Measurements to Assess Chemical Exposure and Lipidomic Alterations” in a keynote lecture at HPLC 2023 in Düsseldorf (1).

Baker described the benefits of liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC–IMS-MS) for this type of analysis. This approach enabled the direct measurement of xenobiotics and indirect evaluation of multi-omics data, to provide comprehensive understanding of the molecular responses that occur as a result of chemical exposures.

Reference

(1) Baker, E. Utilizing Multidimensional Measurements to Assess Chemical Exposure and Lipodomic Alterations. Presented at: HPLC 2023. June 18–22, 2023. Duesseldorf, Germany. KN35.

Recent Videos
Toby Astill | Image Credit: © Thermo Fisher Scientific
John McLean | Image Credit: © Aaron Acevedo
Related Content